Documentation Verification Report

Opposite

📁 Source: Mathlib/CategoryTheory/Shift/Opposite.lean

Statistics

MetricCount
DefinitionscommShiftOp, commShiftUnop, mkShiftCoreOp, natIsoComp, natIsoId, OppositeShift, adjunction, functor, natTrans, instCategoryOppositeShift, instHasShiftOppositeShift, instPreadditiveOppositeShift
12
TheoremscommShift_op, commShiftOp_iso_eq, commShiftUnop_commShiftIso, commShift_op, instCommShiftOppositeShiftHomFunctorNatIsoComp, instCommShiftOppositeShiftHomFunctorNatIsoId, adjunction_counit, adjunction_unit, instAdditiveOppositeShiftShiftFunctor, instHasZeroObjectOppositeShift, oppositeShiftFunctorAdd'_hom_app, oppositeShiftFunctorAdd'_inv_app, oppositeShiftFunctorAdd_hom_app, oppositeShiftFunctorAdd_inv_app, oppositeShiftFunctorZero_hom_app, oppositeShiftFunctorZero_inv_app
16
Total28

CategoryTheory

Definitions

NameCategoryTheorems
OppositeShift 📖CompOp
16 mathmath: instHasZeroObjectOppositeShift, Functor.commShiftOp_iso_eq, OppositeShift.adjunction_unit, oppositeShiftFunctorAdd_inv_app, NatTrans.instCommShiftOppositeShiftHomFunctorNatIsoId, NatTrans.commShift_op, Adjunction.commShift_op, oppositeShiftFunctorZero_inv_app, oppositeShiftFunctorZero_hom_app, oppositeShiftFunctorAdd'_hom_app, OppositeShift.adjunction_counit, NatTrans.instCommShiftOppositeShiftHomFunctorNatIsoComp, oppositeShiftFunctorAdd_hom_app, Functor.commShiftUnop_commShiftIso, oppositeShiftFunctorAdd'_inv_app, instAdditiveOppositeShiftShiftFunctor
instCategoryOppositeShift 📖CompOp
16 mathmath: instHasZeroObjectOppositeShift, Functor.commShiftOp_iso_eq, OppositeShift.adjunction_unit, oppositeShiftFunctorAdd_inv_app, NatTrans.instCommShiftOppositeShiftHomFunctorNatIsoId, NatTrans.commShift_op, Adjunction.commShift_op, oppositeShiftFunctorZero_inv_app, oppositeShiftFunctorZero_hom_app, oppositeShiftFunctorAdd'_hom_app, OppositeShift.adjunction_counit, NatTrans.instCommShiftOppositeShiftHomFunctorNatIsoComp, oppositeShiftFunctorAdd_hom_app, Functor.commShiftUnop_commShiftIso, oppositeShiftFunctorAdd'_inv_app, instAdditiveOppositeShiftShiftFunctor
instHasShiftOppositeShift 📖CompOp
13 mathmath: Functor.commShiftOp_iso_eq, oppositeShiftFunctorAdd_inv_app, NatTrans.instCommShiftOppositeShiftHomFunctorNatIsoId, NatTrans.commShift_op, Adjunction.commShift_op, oppositeShiftFunctorZero_inv_app, oppositeShiftFunctorZero_hom_app, oppositeShiftFunctorAdd'_hom_app, NatTrans.instCommShiftOppositeShiftHomFunctorNatIsoComp, oppositeShiftFunctorAdd_hom_app, Functor.commShiftUnop_commShiftIso, oppositeShiftFunctorAdd'_inv_app, instAdditiveOppositeShiftShiftFunctor
instPreadditiveOppositeShift 📖CompOp
1 mathmath: instAdditiveOppositeShiftShiftFunctor

Theorems

NameKindAssumesProvesValidatesDepends On
instAdditiveOppositeShiftShiftFunctor 📖mathematicalFunctor.Additive
OppositeShift
instCategoryOppositeShift
instPreadditiveOppositeShift
shiftFunctor
instHasShiftOppositeShift
Functor.op_additive
instHasZeroObjectOppositeShift 📖mathematicalLimits.HasZeroObject
OppositeShift
instCategoryOppositeShift
Limits.hasZeroObject_op
oppositeShiftFunctorAdd'_hom_app 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
NatTrans.app
OppositeShift
instCategoryOppositeShift
shiftFunctor
instHasShiftOppositeShift
Functor.comp
Iso.hom
Functor
Functor.category
shiftFunctorAdd'
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.obj
Opposite.unop
Iso.inv
shiftFunctorAdd'_eq_shiftFunctorAdd
oppositeShiftFunctorAdd_hom_app
oppositeShiftFunctorAdd'_inv_app 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
NatTrans.app
OppositeShift
instCategoryOppositeShift
Functor.comp
shiftFunctor
instHasShiftOppositeShift
Iso.inv
Functor
Functor.category
shiftFunctorAdd'
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.obj
Opposite.unop
Iso.hom
shiftFunctorAdd'_eq_shiftFunctorAdd
oppositeShiftFunctorAdd_hom_app 📖mathematicalNatTrans.app
OppositeShift
instCategoryOppositeShift
shiftFunctor
instHasShiftOppositeShift
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
Functor.comp
Iso.hom
Functor
Functor.category
shiftFunctorAdd
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.obj
Opposite.unop
Iso.inv
cancel_mono
mono_of_strongMono
strongMono_of_isIso
NatIso.inv_app_isIso
Iso.hom_inv_id_app
oppositeShiftFunctorAdd_inv_app
op_comp
op_id
oppositeShiftFunctorAdd_inv_app 📖mathematicalNatTrans.app
OppositeShift
instCategoryOppositeShift
Functor.comp
shiftFunctor
instHasShiftOppositeShift
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
Iso.inv
Functor
Functor.category
shiftFunctorAdd
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.obj
Opposite.unop
Iso.hom
oppositeShiftFunctorZero_hom_app 📖mathematicalNatTrans.app
OppositeShift
instCategoryOppositeShift
shiftFunctor
instHasShiftOppositeShift
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Functor.id
Iso.hom
Functor
Functor.category
shiftFunctorZero
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.obj
Opposite.unop
Iso.inv
cancel_mono
mono_of_strongMono
strongMono_of_isIso
NatIso.inv_app_isIso
Iso.hom_inv_id_app
oppositeShiftFunctorZero_inv_app
op_comp
op_id
oppositeShiftFunctorZero_inv_app 📖mathematicalNatTrans.app
OppositeShift
instCategoryOppositeShift
Functor.id
shiftFunctor
instHasShiftOppositeShift
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Iso.inv
Functor
Functor.category
shiftFunctorZero
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.obj
Opposite.unop
Iso.hom

CategoryTheory.Adjunction

Theorems

NameKindAssumesProvesValidatesDepends On
commShift_op 📖mathematicalCommShift
CategoryTheory.OppositeShift
CategoryTheory.instCategoryOppositeShift
CategoryTheory.OppositeShift.functor
CategoryTheory.OppositeShift.adjunction
CategoryTheory.instHasShiftOppositeShift
CategoryTheory.Functor.commShiftOp
CategoryTheory.NatTrans.CommShift.comp
CategoryTheory.NatTrans.instCommShiftOppositeShiftHomFunctorNatIsoId
CategoryTheory.NatTrans.commShift_op
CommShift.commShift_counit
CategoryTheory.NatTrans.instCommShiftOppositeShiftHomFunctorNatIsoComp
CategoryTheory.NatTrans.CommShift.of_iso_inv
CommShift.commShift_unit

CategoryTheory.Functor

Definitions

NameCategoryTheorems
commShiftOp 📖CompOp
5 mathmath: commShiftOp_iso_eq, CategoryTheory.NatTrans.instCommShiftOppositeShiftHomFunctorNatIsoId, CategoryTheory.NatTrans.commShift_op, CategoryTheory.Adjunction.commShift_op, CategoryTheory.NatTrans.instCommShiftOppositeShiftHomFunctorNatIsoComp
commShiftUnop 📖CompOp
1 mathmath: commShiftUnop_commShiftIso

Theorems

NameKindAssumesProvesValidatesDepends On
commShiftOp_iso_eq 📖mathematicalCommShift.commShiftIso
CategoryTheory.OppositeShift
CategoryTheory.instCategoryOppositeShift
CategoryTheory.OppositeShift.functor
CategoryTheory.instHasShiftOppositeShift
commShiftOp
CategoryTheory.Iso.symm
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
category
op
comp
CategoryTheory.shiftFunctor
CategoryTheory.NatIso.op
commShiftUnop_commShiftIso 📖mathematicalCommShift.commShiftIso
commShiftUnop
CategoryTheory.NatIso.removeOp
comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.OppositeShift
CategoryTheory.instCategoryOppositeShift
category
CategoryTheory.instHasShiftOppositeShift
CategoryTheory.OppositeShift.functor

CategoryTheory.HasShift

Definitions

NameCategoryTheorems
mkShiftCoreOp 📖CompOp

CategoryTheory.NatTrans

Theorems

NameKindAssumesProvesValidatesDepends On
commShift_op 📖mathematicalCommShift
CategoryTheory.OppositeShift
CategoryTheory.instCategoryOppositeShift
CategoryTheory.OppositeShift.functor
CategoryTheory.OppositeShift.natTrans
CategoryTheory.instHasShiftOppositeShift
CategoryTheory.Functor.commShiftOp
ext'
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.NatIso.inv_app_isIso
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app_assoc
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.Category.comp_id
Opposite.op_inj_iff
shift_app_comm
instCommShiftOppositeShiftHomFunctorNatIsoComp 📖mathematicalCommShift
CategoryTheory.OppositeShift
CategoryTheory.instCategoryOppositeShift
CategoryTheory.OppositeShift.functor
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
OppositeShift.natIsoComp
CategoryTheory.instHasShiftOppositeShift
CategoryTheory.Functor.commShiftOp
CategoryTheory.Functor.CommShift.comp
ext'
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
instCommShiftOppositeShiftHomFunctorNatIsoId 📖mathematicalCommShift
CategoryTheory.OppositeShift
CategoryTheory.instCategoryOppositeShift
CategoryTheory.Functor.id
CategoryTheory.OppositeShift.functor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
OppositeShift.natIsoId
CategoryTheory.instHasShiftOppositeShift
CategoryTheory.Functor.CommShift.id
CategoryTheory.Functor.commShiftOp
ext'
CategoryTheory.Functor.commShiftIso_id_hom_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Functor.commShiftIso_id_inv_app
CategoryTheory.Category.id_comp

CategoryTheory.NatTrans.OppositeShift

Definitions

NameCategoryTheorems
natIsoComp 📖CompOp
3 mathmath: CategoryTheory.OppositeShift.adjunction_unit, CategoryTheory.OppositeShift.adjunction_counit, CategoryTheory.NatTrans.instCommShiftOppositeShiftHomFunctorNatIsoComp
natIsoId 📖CompOp
3 mathmath: CategoryTheory.OppositeShift.adjunction_unit, CategoryTheory.NatTrans.instCommShiftOppositeShiftHomFunctorNatIsoId, CategoryTheory.OppositeShift.adjunction_counit

CategoryTheory.OppositeShift

Definitions

NameCategoryTheorems
adjunction 📖CompOp
3 mathmath: adjunction_unit, CategoryTheory.Adjunction.commShift_op, adjunction_counit
functor 📖CompOp
8 mathmath: CategoryTheory.Functor.commShiftOp_iso_eq, adjunction_unit, CategoryTheory.NatTrans.instCommShiftOppositeShiftHomFunctorNatIsoId, CategoryTheory.NatTrans.commShift_op, CategoryTheory.Adjunction.commShift_op, adjunction_counit, CategoryTheory.NatTrans.instCommShiftOppositeShiftHomFunctorNatIsoComp, CategoryTheory.Functor.commShiftUnop_commShiftIso
natTrans 📖CompOp
3 mathmath: adjunction_unit, CategoryTheory.NatTrans.commShift_op, adjunction_counit

Theorems

NameKindAssumesProvesValidatesDepends On
adjunction_counit 📖mathematicalCategoryTheory.Adjunction.counit
CategoryTheory.OppositeShift
CategoryTheory.instCategoryOppositeShift
functor
adjunction
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.NatTrans.OppositeShift.natIsoComp
natTrans
CategoryTheory.Adjunction.unit
CategoryTheory.NatTrans.OppositeShift.natIsoId
adjunction_unit 📖mathematicalCategoryTheory.Adjunction.unit
CategoryTheory.OppositeShift
CategoryTheory.instCategoryOppositeShift
functor
adjunction
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.OppositeShift.natIsoId
natTrans
CategoryTheory.Adjunction.counit
CategoryTheory.NatTrans.OppositeShift.natIsoComp

---

← Back to Index