Documentation Verification Report

Quotient

📁 Source: Mathlib/CategoryTheory/Shift/Quotient.lean

Statistics

MetricCount
Definitionsquotient, iso, functor_commShift, liftCommShift, IsCompatibleWithShift
5
Theoremsiso_hom_app, iso_inv_app, liftCommShift_commShiftIso, liftCommShift_compatibility, condition
5
Total10

CategoryTheory.HasShift

Definitions

NameCategoryTheorems
quotient 📖CompOp
4 mathmath: CategoryTheory.Quotient.LiftCommShift.iso_hom_app, CategoryTheory.Quotient.liftCommShift_compatibility, CategoryTheory.Quotient.liftCommShift_commShiftIso, CategoryTheory.Quotient.LiftCommShift.iso_inv_app

CategoryTheory.Quotient

Definitions

NameCategoryTheorems
functor_commShift 📖CompOp
3 mathmath: LiftCommShift.iso_hom_app, liftCommShift_compatibility, LiftCommShift.iso_inv_app
liftCommShift 📖CompOp
2 mathmath: liftCommShift_compatibility, liftCommShift_commShiftIso

Theorems

NameKindAssumesProvesValidatesDepends On
liftCommShift_commShiftIso 📖mathematicalCategoryTheory.Functor.mapCategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Quotient
category
lift
CategoryTheory.HasShift.quotient
liftCommShift
LiftCommShift.iso
liftCommShift_compatibility 📖mathematicalCategoryTheory.Functor.mapCategoryTheory.NatTrans.CommShift
CategoryTheory.Functor.comp
CategoryTheory.Quotient
category
functor
lift
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
lift.isLift
CategoryTheory.Functor.CommShift.comp
CategoryTheory.HasShift.quotient
functor_commShift
liftCommShift
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.commShiftIso_comp_hom_app
liftCommShift_commShiftIso
LiftCommShift.iso_hom_app
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id

CategoryTheory.Quotient.LiftCommShift

Definitions

NameCategoryTheorems
iso 📖CompOp
3 mathmath: iso_hom_app, CategoryTheory.Quotient.liftCommShift_commShiftIso, iso_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
iso_hom_app 📖mathematicalCategoryTheory.Functor.mapCategoryTheory.NatTrans.app
CategoryTheory.Quotient
CategoryTheory.Quotient.category
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
CategoryTheory.HasShift.quotient
CategoryTheory.Quotient.lift
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
CategoryTheory.Functor.obj
CategoryTheory.Quotient.functor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Quotient.functor_commShift
CategoryTheory.Quotient.natTransLift_app
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_id
iso_inv_app 📖mathematicalCategoryTheory.Functor.mapCategoryTheory.NatTrans.app
CategoryTheory.Quotient
CategoryTheory.Quotient.category
CategoryTheory.Functor.comp
CategoryTheory.Quotient.lift
CategoryTheory.shiftFunctor
CategoryTheory.HasShift.quotient
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
CategoryTheory.Functor.obj
CategoryTheory.Quotient.functor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.CommShift.commShiftIso
CategoryTheory.Iso.hom
CategoryTheory.Quotient.functor_commShift
CategoryTheory.Quotient.natTransLift_app
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_id

HomRel

Definitions

NameCategoryTheorems
IsCompatibleWithShift 📖CompData
1 mathmath: HomotopyCategory.instIsCompatibleWithShiftHomologicalComplexIntUpHomotopic

HomRel.IsCompatibleWithShift

Theorems

NameKindAssumesProvesValidatesDepends On
condition 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
CategoryTheory.Functor.map

---

← Back to Index