Documentation Verification Report

ShiftSequence

📁 Source: Mathlib/CategoryTheory/Shift/ShiftSequence.lean

Statistics

MetricCount
DefinitionsShiftSequence, isoZero, sequence, shiftIso, tautological, isoShift, isoShiftZero, shift, shiftIso, shiftMap
10
TheoremsshiftIso_add, shiftIso_zero, instAdditiveShift, instPreservesZeroMorphismsShift, isoShift_hom_naturality, isoShift_hom_naturality_assoc, isoShift_inv_naturality, isoShift_inv_naturality_assoc, shiftIso_add, shiftIso_add', shiftIso_add'_hom_app, shiftIso_add'_inv_app, shiftIso_add_hom_app, shiftIso_add_inv_app, shiftIso_hom_app_comp, shiftIso_hom_app_comp_assoc, shiftIso_hom_app_comp_shiftMap, shiftIso_hom_app_comp_shiftMap_of_add_eq_zero, shiftIso_hom_naturality, shiftIso_hom_naturality_assoc, shiftIso_inv_naturality, shiftIso_inv_naturality_assoc, shiftIso_zero, shiftIso_zero_hom_app, shiftIso_zero_inv_app, shiftMap_comp, shiftMap_comp', shiftMap_comp'_assoc, shiftMap_comp_assoc, shiftMap_zero
30
Total40

CategoryTheory.Functor

Definitions

NameCategoryTheorems
ShiftSequence 📖CompData
isoShift 📖CompOp
4 mathmath: isoShift_inv_naturality_assoc, isoShift_inv_naturality, isoShift_hom_naturality, isoShift_hom_naturality_assoc
isoShiftZero 📖CompOp
3 mathmath: ShiftSequence.induced.isoZero_hom_app_obj, ShiftSequence.induced_isoShiftZero_hom_app_obj_assoc, ShiftSequence.induced_isoShiftZero_hom_app_obj
shift 📖CompOp
66 mathmath: shiftIso_add_inv_app, shiftIso_add', shiftIso_hom_app_comp, CategoryTheory.Abelian.Ext.preadditiveYoneda_homologySequenceδ_singleTriangle_apply, homologySequence_comp_assoc, shiftIso_zero_inv_app, homologySequence_comp, mem_homologicalKernel_iff, ShiftSequence.induced.isoZero_hom_app_obj, shiftMap_comp', homologySequenceδ_naturality, shiftIso_zero_hom_app, isoShift_inv_naturality_assoc, CategoryTheory.Abelian.Ext.preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply, isoShift_inv_naturality, CochainComplex.homologyFunctor_shift, isoShift_hom_naturality, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, shiftIso_add_hom_app, shiftMap_comp, shiftIso_add'_hom_app, shiftIso_inv_naturality, homologySequence_epi_shift_map_mor₁_iff, shiftMap_comp'_assoc, instPreservesZeroMorphismsShift, homologySequence_exact₂, ShiftSequence.induced_shiftIso_hom_app_obj, homologySequenceδ_comp_assoc, homologySequence_mono_shift_map_mor₁_iff, shiftIso_zero, CategoryTheory.Pretriangulated.preadditiveYoneda_homologySequenceδ_apply, shiftIso_add, ShiftSequence.induced.shiftIso_hom_app_obj, ShiftSequence.induced_shiftIso_hom_app_obj_assoc, comp_homologySequenceδ, ShiftSequence.induced_isoShiftZero_hom_app_obj_assoc, homologySequence_exact₃, shiftMap_zero, shiftIso_hom_naturality_assoc, shiftIso_hom_app_comp_assoc, homologySequence_exact₁, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, HomotopyCategory.homologyFunctor_shiftMap_assoc, isoShift_hom_naturality_assoc, shiftIso_hom_app_comp_shiftMap, shiftIso_add'_inv_app, HomotopyCategory.homologyShiftIso_hom_app, homologySequenceδ_naturality_assoc, CategoryTheory.Pretriangulated.preadditiveYoneda_shiftMap_apply, shiftIso_inv_naturality_assoc, instAdditiveShift, ShiftSequence.induced_shiftMap, HomotopyCategory.homologyFunctor_shiftMap, shiftMap_comp_assoc, ShiftSequence.induced_isoShiftZero_hom_app_obj, shiftIso_hom_app_comp_shiftMap_of_add_eq_zero, shiftIso_hom_naturality, CochainComplex.liftCycles_shift_homologyπ_assoc, homologySequenceδ_comp, ShiftSequence.induced_shiftMap_assoc, homologySequence_mono_shift_map_mor₂_iff, comp_homologySequenceδ_assoc, mem_homologicalKernel_trW_iff, CochainComplex.liftCycles_shift_homologyπ, CategoryTheory.Pretriangulated.preadditiveCoyoneda_homologySequenceδ_apply, homologySequence_epi_shift_map_mor₂_iff
shiftIso 📖CompOp
23 mathmath: shiftIso_add_inv_app, shiftIso_add', shiftIso_hom_app_comp, shiftIso_zero_inv_app, shiftIso_zero_hom_app, shiftIso_add_hom_app, shiftIso_add'_hom_app, shiftIso_inv_naturality, ShiftSequence.induced_shiftIso_hom_app_obj, shiftIso_zero, shiftIso_add, ShiftSequence.induced.shiftIso_hom_app_obj, ShiftSequence.induced_shiftIso_hom_app_obj_assoc, shiftIso_hom_naturality_assoc, shiftIso_hom_app_comp_assoc, shiftIso_hom_app_comp_shiftMap, shiftIso_add'_inv_app, HomotopyCategory.homologyShiftIso_hom_app, shiftIso_inv_naturality_assoc, shiftIso_hom_app_comp_shiftMap_of_add_eq_zero, shiftIso_hom_naturality, CochainComplex.liftCycles_shift_homologyπ_assoc, CochainComplex.liftCycles_shift_homologyπ
shiftMap 📖CompOp
14 mathmath: shiftMap_comp', CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, shiftMap_comp, shiftMap_comp'_assoc, shiftMap_zero, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, HomotopyCategory.homologyFunctor_shiftMap_assoc, shiftIso_hom_app_comp_shiftMap, CategoryTheory.Pretriangulated.preadditiveYoneda_shiftMap_apply, ShiftSequence.induced_shiftMap, HomotopyCategory.homologyFunctor_shiftMap, shiftMap_comp_assoc, shiftIso_hom_app_comp_shiftMap_of_add_eq_zero, ShiftSequence.induced_shiftMap_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
instAdditiveShift 📖mathematicalAdditive
CategoryTheory.shiftFunctor
shiftadditive_of_iso
instAdditiveComp
instPreservesZeroMorphismsShift 📖mathematicalPreservesZeroMorphisms
CategoryTheory.shiftFunctor
shiftpreservesZeroMorphisms_of_iso
preservesZeroMorphisms_comp
isoShift_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.shiftFunctor
shift
map
CategoryTheory.NatTrans.app
comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
isoShift
CategoryTheory.NatTrans.naturality
isoShift_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.shiftFunctor
map
shift
CategoryTheory.NatTrans.app
comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
isoShift
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoShift_hom_naturality
isoShift_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
shift
comp
CategoryTheory.shiftFunctor
map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
isoShift
CategoryTheory.NatTrans.naturality
isoShift_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
shift
map
CategoryTheory.shiftFunctor
CategoryTheory.NatTrans.app
comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
isoShift
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoShift_inv_naturality
shiftIso_add 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
shiftIso
CategoryTheory.Iso.trans
CategoryTheory.Functor
category
comp
CategoryTheory.shiftFunctor
shift
isoWhiskerRight
CategoryTheory.shiftFunctorAdd
associator
isoWhiskerLeft
ShiftSequence.shiftIso_add
shiftIso_add' 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
shiftIso
CategoryTheory.Iso.trans
CategoryTheory.Functor
category
comp
CategoryTheory.shiftFunctor
shift
isoWhiskerRight
CategoryTheory.shiftFunctorAdd'
associator
isoWhiskerLeft
CategoryTheory.shiftFunctorAdd'_eq_shiftFunctorAdd
shiftIso_add
shiftIso_add'_hom_app 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.NatTrans.app
comp
CategoryTheory.shiftFunctor
shift
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
shiftIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
map
CategoryTheory.shiftFunctorAdd'
shiftIso_add'
CategoryTheory.Category.id_comp
shiftIso_add'_inv_app 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.NatTrans.app
shift
comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
shiftIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
map
CategoryTheory.shiftFunctorAdd'
shiftIso_add'
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
shiftIso_add_hom_app 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.NatTrans.app
comp
CategoryTheory.shiftFunctor
shift
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
shiftIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
map
CategoryTheory.shiftFunctorAdd
shiftIso_add
CategoryTheory.Category.id_comp
shiftIso_add_inv_app 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.NatTrans.app
shift
comp
CategoryTheory.shiftFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
shiftIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
map
CategoryTheory.shiftFunctorAdd
shiftIso_add
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
shiftIso_hom_app_comp 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
comp
CategoryTheory.shiftFunctor
shift
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
shiftIso
map
CategoryTheory.Iso.inv
CategoryTheory.shiftFunctorAdd'
shiftIso_add'_hom_app
map_comp_assoc
CategoryTheory.Iso.inv_hom_id_app
map_id
CategoryTheory.Category.id_comp
shiftIso_hom_app_comp_assoc 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
shift
CategoryTheory.shiftFunctor
CategoryTheory.NatTrans.app
comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
shiftIso
map
CategoryTheory.Iso.inv
CategoryTheory.shiftFunctorAdd'
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
shiftIso_hom_app_comp
shiftIso_hom_app_comp_shiftMap 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
comp
CategoryTheory.shiftFunctor
shift
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
shiftIso
shiftMap
map
CategoryTheory.Iso.inv
CategoryTheory.shiftFunctorAdd'
shiftIso_add'_hom_app
CategoryTheory.Iso.inv_hom_id_app
map_id
CategoryTheory.Category.id_comp
shiftIso_hom_naturality_assoc
shiftIso_hom_app_comp_shiftMap_of_add_eq_zero 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
comp
CategoryTheory.shiftFunctor
shift
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
shiftIso
shiftMap
map
id
CategoryTheory.shiftFunctorCompIsoId
AddRightCancelSemigroup.toIsRightCancelAdd
add_assoc
zero_add
add_zero
shiftIso_hom_app_comp_shiftMap
shiftIso_zero_hom_app
map_comp
shiftIso_hom_naturality 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
shift
CategoryTheory.shiftFunctor
map
CategoryTheory.NatTrans.app
comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
shiftIso
CategoryTheory.NatTrans.naturality
shiftIso_hom_naturality_assoc 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
shift
CategoryTheory.shiftFunctor
map
CategoryTheory.NatTrans.app
comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
shiftIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
shiftIso_hom_naturality
shiftIso_inv_naturality 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
shift
comp
CategoryTheory.shiftFunctor
map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
shiftIso
CategoryTheory.NatTrans.naturality
shiftIso_inv_naturality_assoc 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
shift
map
CategoryTheory.shiftFunctor
CategoryTheory.NatTrans.app
comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
shiftIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
shiftIso_inv_naturality
shiftIso_zero 📖mathematicalshiftIso
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
zero_add
CategoryTheory.Iso.trans
CategoryTheory.Functor
category
comp
CategoryTheory.shiftFunctor
shift
id
isoWhiskerRight
CategoryTheory.shiftFunctorZero
leftUnitor
ShiftSequence.shiftIso_zero
shiftIso_zero_hom_app 📖mathematicalCategoryTheory.NatTrans.app
comp
CategoryTheory.shiftFunctor
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
shift
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
shiftIso
zero_add
map
obj
id
CategoryTheory.shiftFunctorZero
zero_add
shiftIso_zero
CategoryTheory.Category.comp_id
shiftIso_zero_inv_app 📖mathematicalCategoryTheory.NatTrans.app
shift
comp
CategoryTheory.shiftFunctor
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
shiftIso
zero_add
map
obj
id
CategoryTheory.shiftFunctorZero
zero_add
shiftIso_zero
CategoryTheory.Category.id_comp
shiftMap_comp 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
shiftMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.shiftFunctor
map
shift
map_comp
CategoryTheory.Category.assoc
shiftIso_hom_naturality
shiftMap_comp' 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
shiftMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.shiftFunctor
shift
map
map_comp
CategoryTheory.Category.assoc
shiftMap_comp'_assoc 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
shift
shiftMap
CategoryTheory.shiftFunctor
map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
shiftMap_comp'
shiftMap_comp_assoc 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
shift
shiftMap
CategoryTheory.shiftFunctor
map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
shiftMap_comp
shiftMap_zero 📖mathematicalPreservesZeroMorphisms
CategoryTheory.shiftFunctor
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
shiftMap
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Limits.HasZeroMorphisms.zero
shift
map_zero
instPreservesZeroMorphismsShift
CategoryTheory.Limits.zero_comp

CategoryTheory.Functor.ShiftSequence

Definitions

NameCategoryTheorems
isoZero 📖CompOp
sequence 📖CompOp
2 mathmath: shiftIso_add, shiftIso_zero
shiftIso 📖CompOp
2 mathmath: shiftIso_add, shiftIso_zero
tautological 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
shiftIso_add 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
shiftIso
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
sequence
CategoryTheory.Functor.isoWhiskerRight
CategoryTheory.shiftFunctorAdd
CategoryTheory.Functor.associator
CategoryTheory.Functor.isoWhiskerLeft
shiftIso_zero 📖mathematicalshiftIso
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
zero_add
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
sequence
CategoryTheory.Functor.id
CategoryTheory.Functor.isoWhiskerRight
CategoryTheory.shiftFunctorZero
CategoryTheory.Functor.leftUnitor

---

← Back to Index