π Source: Mathlib/CategoryTheory/Simple.lean
Simple
isIso_inl_iff_isZero
iff_of_iso
mono_isIso_iff_nonzero
not_isZero
of_iso
cokernel_zero_of_nonzero_to_simple
epi_from_simple_zero_of_not_iso
epi_of_nonzero_to_simple
id_nonzero
indecomposable_of_simple
instIsSimpleOrderSubobjectOfSimple
instNontrivialEndOfSimple
instNontrivialSubobjectOfSimple
isIso_of_epi_of_nonzero
isIso_of_mono_of_nonzero
kernel_zero_of_nonzero_from_simple
mono_to_simple_zero_of_not_iso
simple_iff_subobject_isSimpleOrder
simple_of_cosimple
simple_of_isSimpleOrder_subobject
subobject_simple_iff_isAtom
zero_not_simple
simple_of_finrank_eq_one
Simple.iff_of_iso
instSimpleSimpleSubobject
Simple.of_iso
simple_iff_isSimpleModule
simple_of_isSimpleModule
FDRep.simple_iff_end_is_rank_one
exists_simple_subobject
simple_iff_isSimpleModule'
FDRep.simple_iff_char_is_norm_one
Limits.cokernel.Ο
Preadditive.preadditiveHasZeroMorphisms
Abelian.toPreadditive
Limits.HasCokernels.has_colimit
Abelian.has_cokernels
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Limits.cokernel
Limits.HasZeroMorphisms.zero
Limits.eq_zero_of_mono_cokernel
mono_of_strongMono
instStrongMonoOfIsRegularMono
instIsRegularMonoOfIsSplitMono
IsSplitMono.of_iso
Limits.coequalizer.Ο_epi
Epi
Limits.image.fac
epi_comp
Limits.instEpiFactorThruImageOfHasLimitWalkingParallelPairParallelPair
Limits.hasLimitOfHasLimitsOfShape
epi_of_effectiveEpi
instEffectiveEpiOfIsIso
Limits.instMonoΞΉ
Limits.eq_zero_of_image_eq_zero
Simple.mono_isIso_iff_nonzero
instMonoId
IsIso.id
Indecomposable
Limits.HasBinaryBiproducts.has_binary_biproduct
Simple.not_isZero
Biprod.isIso_inl_iff_isZero
Limits.biprod.inl_mono
Limits.IsZero.iff_isSplitMono_eq_zero
IsSimpleOrder
Subobject
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderSubobject
Subobject.boundedOrder
Limits.HasZeroObject.hasInitial
Limits.HasZeroObject.initialMonoClass
Subobject.mk_surjective
Subobject.mk_eq_bot_iff_zero
Subobject.isIso_iff_mk_eq_top
Nontrivial
End
nontrivial_of_ne
Subobject.nontrivial_of_not_isZero
IsIso
isIso_of_mono_of_epi
balanced_of_strongMonoCategory
strongMonoCategory_of_regularMonoCategory
regularMonoCategoryOfNormalMonoCategory
Abelian.toIsNormalMonoCategory
Preadditive.mono_of_kernel_zero
Limits.HasKernels.has_limit
Abelian.has_kernels
Limits.equalizer.ΞΉ_mono
Limits.kernel_not_iso_of_nonzero
Limits.kernel.ΞΉ
Limits.kernel
Limits.eq_zero_of_epi_kernel
Limits.cokernel.Ο_of_epi
Abelian.hasZeroObject
Limits.hasCoequalizer_of_self
Limits.cokernel.Ο_of_zero
Preadditive.epi_of_cokernel_zero
Limits.cokernel_not_iso_of_nonzero
IsSimpleOrder.bot_ne_top
IsSimpleOrder.eq_bot_or_eq_top
Functor.obj
Preorder.smallCategory
Subobject.underlying
IsAtom
Subobject.orderBot
OrderIso.isSimpleOrder_iff
Set.isSimpleOrder_Iic_iff_isAtom
Limits.HasZeroObject.instMono
Limits.comp_zero
Limits.id_zero
CategoryTheory.IsIso
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.IsZero
CategoryTheory.Limits.biprod.isIso_inl_iff_id_eq_fst_comp_inl
CategoryTheory.Limits.biprod.total
add_eq_left
AddLeftCancelSemigroup.toIsLeftCancelAdd
CategoryTheory.eq_whisker
CategoryTheory.Category.assoc
CategoryTheory.Limits.BinaryBicone.inr_snd
CategoryTheory.Category.comp_id
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.IsZero.iff_isSplitEpi_eq_zero
CategoryTheory.Limits.biprod.snd_epi
CategoryTheory.Simple
CategoryTheory.id_nonzero
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.mono_comp
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.isIso_of_mono_of_nonzero
CategoryTheory.Iso.hom_inv_id
CategoryTheory.cancel_mono
CategoryTheory.Iso.isIso_inv
---
β Back to Index