Documentation Verification Report

Simple

πŸ“ Source: Mathlib/CategoryTheory/Simple.lean

Statistics

MetricCount
DefinitionsSimple
1
TheoremsisIso_inl_iff_isZero, iff_of_iso, mono_isIso_iff_nonzero, not_isZero, of_iso, cokernel_zero_of_nonzero_to_simple, epi_from_simple_zero_of_not_iso, epi_of_nonzero_to_simple, id_nonzero, indecomposable_of_simple, instIsSimpleOrderSubobjectOfSimple, instNontrivialEndOfSimple, instNontrivialSubobjectOfSimple, isIso_of_epi_of_nonzero, isIso_of_mono_of_nonzero, kernel_zero_of_nonzero_from_simple, mono_to_simple_zero_of_not_iso, simple_iff_subobject_isSimpleOrder, simple_of_cosimple, simple_of_isSimpleOrder_subobject, subobject_simple_iff_isAtom, zero_not_simple
22
Total23

CategoryTheory

Definitions

NameCategoryTheorems
Simple πŸ“–CompData
14 mathmath: simple_of_finrank_eq_one, Simple.iff_of_iso, instSimpleSimpleSubobject, Simple.of_iso, simple_iff_subobject_isSimpleOrder, simple_of_cosimple, simple_iff_isSimpleModule, subobject_simple_iff_isAtom, simple_of_isSimpleModule, simple_of_isSimpleOrder_subobject, FDRep.simple_iff_end_is_rank_one, exists_simple_subobject, simple_iff_isSimpleModule', FDRep.simple_iff_char_is_norm_one

Theorems

NameKindAssumesProvesValidatesDepends On
cokernel_zero_of_nonzero_to_simple πŸ“–mathematicalβ€”Limits.cokernel.Ο€
Preadditive.preadditiveHasZeroMorphisms
Abelian.toPreadditive
Limits.HasCokernels.has_colimit
Abelian.has_cokernels
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Limits.cokernel
Limits.HasZeroMorphisms.zero
β€”Limits.HasCokernels.has_colimit
Abelian.has_cokernels
Limits.eq_zero_of_mono_cokernel
mono_of_strongMono
instStrongMonoOfIsRegularMono
instIsRegularMonoOfIsSplitMono
IsSplitMono.of_iso
isIso_of_epi_of_nonzero
Limits.coequalizer.Ο€_epi
epi_from_simple_zero_of_not_iso πŸ“–mathematicalβ€”Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Limits.HasZeroMorphisms.zero
Preadditive.preadditiveHasZeroMorphisms
Abelian.toPreadditive
β€”isIso_of_epi_of_nonzero
epi_of_nonzero_to_simple πŸ“–mathematicalβ€”Epiβ€”Limits.image.fac
epi_comp
Limits.instEpiFactorThruImageOfHasLimitWalkingParallelPairParallelPair
Limits.hasLimitOfHasLimitsOfShape
epi_of_effectiveEpi
instEffectiveEpiOfIsIso
isIso_of_mono_of_nonzero
Limits.instMonoΞΉ
Limits.eq_zero_of_image_eq_zero
id_nonzero πŸ“–β€”β€”β€”β€”Simple.mono_isIso_iff_nonzero
instMonoId
IsIso.id
indecomposable_of_simple πŸ“–mathematicalβ€”Indecomposable
Preadditive.preadditiveHasZeroMorphisms
β€”Limits.HasBinaryBiproducts.has_binary_biproduct
Simple.not_isZero
Simple.of_iso
Biprod.isIso_inl_iff_isZero
Simple.mono_isIso_iff_nonzero
mono_of_strongMono
instStrongMonoOfIsRegularMono
instIsRegularMonoOfIsSplitMono
Limits.biprod.inl_mono
Limits.IsZero.iff_isSplitMono_eq_zero
instIsSimpleOrderSubobjectOfSimple πŸ“–mathematicalβ€”IsSimpleOrder
Subobject
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderSubobject
Subobject.boundedOrder
Limits.HasZeroObject.hasInitial
Limits.HasZeroObject.initialMonoClass
β€”Limits.HasZeroObject.hasInitial
Limits.HasZeroObject.initialMonoClass
instNontrivialSubobjectOfSimple
Subobject.mk_surjective
Subobject.mk_eq_bot_iff_zero
Subobject.isIso_iff_mk_eq_top
Simple.mono_isIso_iff_nonzero
instNontrivialEndOfSimple πŸ“–mathematicalβ€”Nontrivial
End
Category.toCategoryStruct
β€”nontrivial_of_ne
id_nonzero
instNontrivialSubobjectOfSimple πŸ“–mathematicalβ€”Nontrivial
Subobject
β€”Subobject.nontrivial_of_not_isZero
Simple.not_isZero
isIso_of_epi_of_nonzero πŸ“–mathematicalβ€”IsIsoβ€”isIso_of_mono_of_epi
balanced_of_strongMonoCategory
strongMonoCategory_of_regularMonoCategory
regularMonoCategoryOfNormalMonoCategory
Abelian.toIsNormalMonoCategory
Preadditive.mono_of_kernel_zero
Limits.HasKernels.has_limit
Abelian.has_kernels
mono_to_simple_zero_of_not_iso
Limits.equalizer.ΞΉ_mono
Limits.kernel_not_iso_of_nonzero
isIso_of_mono_of_nonzero πŸ“–mathematicalβ€”IsIsoβ€”Simple.mono_isIso_iff_nonzero
kernel_zero_of_nonzero_from_simple πŸ“–mathematicalβ€”Limits.kernel.ΞΉ
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Limits.kernel
Limits.HasZeroMorphisms.zero
β€”Limits.eq_zero_of_epi_kernel
epi_of_effectiveEpi
instEffectiveEpiOfIsIso
isIso_of_mono_of_nonzero
Limits.equalizer.ΞΉ_mono
mono_to_simple_zero_of_not_iso πŸ“–mathematicalβ€”Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Limits.HasZeroMorphisms.zero
β€”isIso_of_mono_of_nonzero
simple_iff_subobject_isSimpleOrder πŸ“–mathematicalβ€”Simple
IsSimpleOrder
Subobject
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderSubobject
Subobject.boundedOrder
Limits.HasZeroObject.hasInitial
Limits.HasZeroObject.initialMonoClass
β€”Limits.HasZeroObject.hasInitial
Limits.HasZeroObject.initialMonoClass
instIsSimpleOrderSubobjectOfSimple
simple_of_isSimpleOrder_subobject
simple_of_cosimple πŸ“–mathematicalIsIsoSimple
Preadditive.preadditiveHasZeroMorphisms
Abelian.toPreadditive
β€”Limits.HasCokernels.has_colimit
Abelian.has_cokernels
Limits.cokernel.Ο€_of_epi
Abelian.hasZeroObject
epi_of_effectiveEpi
instEffectiveEpiOfIsIso
Limits.hasCoequalizer_of_self
Limits.coequalizer.Ο€_epi
Limits.cokernel.Ο€_of_zero
Preadditive.epi_of_cokernel_zero
Limits.cokernel_not_iso_of_nonzero
isIso_of_mono_of_epi
balanced_of_strongMonoCategory
strongMonoCategory_of_regularMonoCategory
regularMonoCategoryOfNormalMonoCategory
Abelian.toIsNormalMonoCategory
simple_of_isSimpleOrder_subobject πŸ“–mathematicalβ€”Simpleβ€”Limits.HasZeroObject.hasInitial
Limits.HasZeroObject.initialMonoClass
IsSimpleOrder.bot_ne_top
Subobject.mk_eq_bot_iff_zero
Subobject.isIso_iff_mk_eq_top
IsSimpleOrder.eq_bot_or_eq_top
subobject_simple_iff_isAtom πŸ“–mathematicalβ€”Simple
Functor.obj
Subobject
Preorder.smallCategory
PartialOrder.toPreorder
instPartialOrderSubobject
Subobject.underlying
IsAtom
Subobject.orderBot
Limits.HasZeroObject.hasInitial
Limits.HasZeroObject.initialMonoClass
β€”Limits.HasZeroObject.hasInitial
Limits.HasZeroObject.initialMonoClass
simple_iff_subobject_isSimpleOrder
OrderIso.isSimpleOrder_iff
Set.isSimpleOrder_Iic_iff_isAtom
zero_not_simple πŸ“–β€”β€”β€”β€”Simple.mono_isIso_iff_nonzero
Limits.HasZeroObject.instMono
Limits.comp_zero
Limits.id_zero

CategoryTheory.Biprod

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_inl_iff_isZero πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.IsZero
β€”CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Limits.biprod.isIso_inl_iff_id_eq_fst_comp_inl
CategoryTheory.Limits.biprod.total
add_eq_left
AddLeftCancelSemigroup.toIsLeftCancelAdd
CategoryTheory.eq_whisker
CategoryTheory.Category.assoc
CategoryTheory.Limits.BinaryBicone.inr_snd
CategoryTheory.Category.comp_id
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.IsZero.iff_isSplitEpi_eq_zero
CategoryTheory.Limits.biprod.snd_epi

CategoryTheory.Simple

Theorems

NameKindAssumesProvesValidatesDepends On
iff_of_iso πŸ“–mathematicalβ€”CategoryTheory.Simpleβ€”of_iso
mono_isIso_iff_nonzero πŸ“–mathematicalβ€”CategoryTheory.IsIsoβ€”β€”
not_isZero πŸ“–mathematicalβ€”CategoryTheory.Limits.IsZeroβ€”CategoryTheory.id_nonzero
of_iso πŸ“–mathematicalβ€”CategoryTheory.Simpleβ€”CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.zero_comp
mono_isIso_iff_nonzero
CategoryTheory.mono_comp
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.isIso_of_mono_of_nonzero
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.cancel_mono
CategoryTheory.Iso.isIso_inv

---

← Back to Index