Documentation Verification Report

SingleObj

📁 Source: Mathlib/CategoryTheory/SingleObj.lean

Statistics

MetricCount
Definitionscategory, categoryStruct, differenceFunctor, finCategoryOfFintype, functor, groupoid, mapHom, natTrans, toEnd, toCat, toFunctor, toSingleObjEquiv, toAut
13
Theoremscomp_as_mul, differenceFunctor_map, differenceFunctor_obj, functor_map, functor_obj, id_as_one, inv_as_inv, mapHom_comp, mapHom_id, natTrans_app, toEnd_def, toCat_faithful, toCat_full, comp_toFunctor, id_toFunctor, toSingleObjEquiv_counitIso_hom, toSingleObjEquiv_counitIso_inv, toSingleObjEquiv_functor_map, toSingleObjEquiv_functor_obj, toSingleObjEquiv_inverse_map, toSingleObjEquiv_inverse_obj, toSingleObjEquiv_unitIso_hom, toSingleObjEquiv_unitIso_inv, toAut_hom, toAut_inv
25
Total38

CategoryTheory.SingleObj

Definitions

NameCategoryTheorems
category 📖CompOp
103 mathmath: CategoryTheory.Limits.SingleObj.Types.sections.equivFixedPoints_apply_coe, Action.instIsEquivalenceFunctorSingleObjInverse, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, mapHom_id, Action.functorCategoryEquivalence_inverse, Action.FunctorCategoryEquivalence.counitIso_inv_app_app, Action.functorCategoryEquivalence_unitIso, CategoryTheory.Mat.instFaithfulMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Action.leftUnitor_inv_hom, CategoryTheory.PreGaloisCategory.FiberFunctor.instPreservesColimitsOfShapeFintypeCatSingleObjOfFinite, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, MulEquiv.toSingleObjEquiv_inverse_map, CategoryTheory.PreGaloisCategory.FiberFunctor.preservesQuotientsByFiniteGroups, Action.whiskerRight_hom, CategoryTheory.Limits.SingleObj.Types.colimitEquivQuotient_symm_apply, Action.FunctorCategoryEquivalence.functor_obj_obj, CategoryTheory.PreGaloisCategory.isGalois_iff_aux, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, MonoidHom.id_toFunctor, Rep.homEquiv_apply_hom, CategoryTheory.FintypeCat.instHasColimitsOfShapeSingleObjFintypeCatOfFinite, IsFreeGroupoid.SpanningTree.functorOfMonoidHom_map, CategoryTheory.actionAsFunctor_map, Action.FunctorCategoryEquivalence.unitIso_inv_app_hom, Action.FunctorCategoryEquivalence.functor_map_app, Rep.MonoidalClosed.linearHomEquivComm_hom, CategoryTheory.Limits.SingleObj.Types.colimitEquivQuotient_apply, Action.FunctorCategoryEquivalence.functor_δ, inv_as_inv, MulEquiv.toSingleObjEquiv_unitIso_hom, CategoryTheory.Mat.instEssSurjMat_SingleObjMulOppositeEquivalenceSingleObjInverse, CategoryTheory.ActionCategory.uncurry_map, CategoryTheory.Mat.equivalenceSingleObjInverse_obj_carrier, Action.functorCategoryEquivalence_functor, functor_map, CategoryTheory.ActionCategory.coe_back, Action.diagonalSuccIsoTensorTrivial_inv_hom_apply, MulEquiv.toSingleObjEquiv_functor_obj, Action.instIsEquivalenceFunctorSingleObjFunctor, MulEquiv.toSingleObjEquiv_counitIso_hom, IsFreeGroupoid.ext_functor_iff, functor_obj, CategoryTheory.Limits.SingleObj.Types.limitEquivFixedPoints_symm_apply, Action.FunctorCategoryEquivalence.inverse_obj_ρ_apply, CategoryTheory.ActionCategory.π_obj, CategoryTheory.PreGaloisCategory.instPreservesColimitsOfShapeActionFintypeCatAutFunctorSingleObjFunctorToActionOfFinite, CategoryTheory.PreGaloisCategory.instHasColimitsOfShapeSingleObjOfFinite, MulEquiv.toSingleObjEquiv_inverse_obj, MulEquiv.toSingleObjEquiv_unitIso_inv, CategoryTheory.Limits.SingleObj.colimitTypeRelEquivOrbitRelQuotient_apply, Units.toAut_hom, IsFreeGroupoid.SpanningTree.functorOfMonoidHom_obj, MulEquiv.toSingleObjEquiv_counitIso_inv, CategoryTheory.ActionCategory.back_coe, differenceFunctor_map, CategoryTheory.Limits.SingleObj.colimitTypeRel_iff_orbitRel, CategoryTheory.ActionCategory.curry_apply_left, mapHom_comp, Action.functorCategoryEquivalence_counitIso, MonoidHom.comp_toFunctor, Action.FunctorCategoryEquivalence.inverse_obj_V, CategoryTheory.PreGaloisCategory.instPreservesColimitsOfShapeFintypeCatSingleObjInclOfFinite, Action.FunctorCategoryEquivalence.unitIso_hom_app_hom, CategoryTheory.Limits.SingleObj.Types.limitEquivFixedPoints_apply_coe, Action.tensorHom_hom, Action.associator_hom_hom, CategoryTheory.Mat.instIsEquivalenceMat_SingleObjMulOppositeEquivalenceSingleObjInverse, CategoryTheory.actionAsFunctor_obj, CategoryTheory.Limits.SingleObj.colimitTypeRelEquivOrbitRelQuotient_symm_apply, CategoryTheory.ActionCategory.comp_val, CategoryTheory.ActionCategory.uncurry_obj, Action.FunctorCategoryEquivalence.inverse_map_hom, CategoryTheory.PreGaloisCategory.hasQuotientsByFiniteGroups, Action.whiskerLeft_hom, Rep.MonoidalClosed.linearHomEquiv_hom, Units.toAut_inv, IsFreeGroupoid.unique_lift, CategoryTheory.ActionCategory.id_val, differenceFunctor_obj, Action.FunctorCategoryEquivalence.counitIso_hom_app_app, Rep.homEquiv_symm_apply_hom, CategoryTheory.PreGaloisCategory.IsGalois.quotientByAutTerminal, Action.FunctorCategoryEquivalence.functor_μ, CategoryTheory.ActionCategory.stabilizerIsoEnd_apply, CategoryTheory.Mat.instFullMat_SingleObjMulOppositeEquivalenceSingleObjInverse, CategoryTheory.ActionCategory.homOfPair.val, Rep.ihom_coev_app_hom, Action.rightUnitor_hom_hom, CategoryTheory.ActionCategory.π_map, CategoryTheory.Mat.equivalenceSingleObjInverse_map, Action.associator_inv_hom, Action.functorCategoryEquivalence_linear, Action.functorCategoryEquivalence_preservesZeroMorphisms, CategoryTheory.Limits.SingleObj.Types.sections.equivFixedPoints_symm_apply_coe, CategoryTheory.Mat.equivalenceSingleObjInverse_obj_str, Action.rightUnitor_inv_hom, MulEquiv.toSingleObjEquiv_functor_map, Action.functorCategoryEquivalence_additive, Action.FunctorCategoryEquivalence.functor_obj_map, CategoryTheory.ActionCategory.stabilizerIsoEnd_symm_apply, Action.leftUnitor_hom_hom, Action.FunctorCategoryEquivalence.functor_η, Action.FunctorCategoryEquivalence.functor_ε
categoryStruct 📖CompOp
5 mathmath: id_as_one, comp_as_mul, toEnd_def, Units.toAut_hom, Units.toAut_inv
differenceFunctor 📖CompOp
2 mathmath: differenceFunctor_map, differenceFunctor_obj
finCategoryOfFintype 📖CompOp
functor 📖CompOp
4 mathmath: CategoryTheory.PreGaloisCategory.isGalois_iff_aux, functor_map, functor_obj, CategoryTheory.PreGaloisCategory.IsGalois.quotientByAutTerminal
groupoid 📖CompOp
1 mathmath: inv_as_inv
mapHom 📖CompOp
2 mathmath: mapHom_id, mapHom_comp
natTrans 📖CompOp
1 mathmath: natTrans_app
toEnd 📖CompOp
3 mathmath: toEnd_def, Units.toAut_hom, Units.toAut_inv

Theorems

NameKindAssumesProvesValidatesDepends On
comp_as_mul 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.SingleObj
categoryStruct
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
Quiver.Hom
Quiver.SingleObj.inst
differenceFunctor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.SingleObj
category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
differenceFunctor
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
differenceFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.SingleObj
category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
differenceFunctor
functor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.SingleObj
category
functor
DFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
functor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.SingleObj
category
functor
id_as_one 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.SingleObj
categoryStruct
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
inv_as_inv 📖mathematicalCategoryTheory.inv
CategoryTheory.SingleObj
category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.IsGroupoid.all_isIso
CategoryTheory.instIsGroupoid
groupoid
Quiver.Hom
Quiver.SingleObj.inst
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
CategoryTheory.IsIso.inv_eq_of_hom_inv_id
CategoryTheory.IsGroupoid.all_isIso
CategoryTheory.instIsGroupoid
comp_as_mul
inv_mul_cancel
id_as_one
mapHom_comp 📖mathematicalDFunLike.coe
Equiv
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Functor
CategoryTheory.SingleObj
category
EquivLike.toFunLike
Equiv.instEquivLike
mapHom
MonoidHom.comp
CategoryTheory.Functor.comp
mapHom_id 📖mathematicalDFunLike.coe
Equiv
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Functor
CategoryTheory.SingleObj
category
EquivLike.toFunLike
Equiv.instEquivLike
mapHom
MonoidHom.id
CategoryTheory.Functor.id
natTrans_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.SingleObj
category
star
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
natTrans
toEnd_def 📖mathematicalDFunLike.coe
MulEquiv
CategoryTheory.End
CategoryTheory.SingleObj
categoryStruct
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toMul
star
CategoryTheory.End.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
toEnd

MonCat

Definitions

NameCategoryTheorems
toCat 📖CompOp
2 mathmath: toCat_faithful, toCat_full

Theorems

NameKindAssumesProvesValidatesDepends On
toCat_faithful 📖mathematicalCategoryTheory.Functor.Faithful
MonCat
instCategory
CategoryTheory.Cat
CategoryTheory.Cat.category
toCat
hom_ext
EquivLike.toEmbeddingLike
toCat_full 📖mathematicalCategoryTheory.Functor.Full
MonCat
instCategory
CategoryTheory.Cat
CategoryTheory.Cat.category
toCat
Equiv.surjective
CategoryTheory.Cat.Hom.ext

MonoidHom

Definitions

NameCategoryTheorems
toFunctor 📖CompOp
6 mathmath: id_toFunctor, MulEquiv.toSingleObjEquiv_unitIso_hom, MulEquiv.toSingleObjEquiv_counitIso_hom, MulEquiv.toSingleObjEquiv_unitIso_inv, MulEquiv.toSingleObjEquiv_counitIso_inv, comp_toFunctor

Theorems

NameKindAssumesProvesValidatesDepends On
comp_toFunctor 📖mathematicaltoFunctor
comp
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Functor.comp
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
id_toFunctor 📖mathematicaltoFunctor
id
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Functor.id
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category

MulEquiv

Definitions

NameCategoryTheorems
toSingleObjEquiv 📖CompOp
8 mathmath: toSingleObjEquiv_inverse_map, toSingleObjEquiv_unitIso_hom, toSingleObjEquiv_functor_obj, toSingleObjEquiv_counitIso_hom, toSingleObjEquiv_inverse_obj, toSingleObjEquiv_unitIso_inv, toSingleObjEquiv_counitIso_inv, toSingleObjEquiv_functor_map

Theorems

NameKindAssumesProvesValidatesDepends On
toSingleObjEquiv_counitIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
MonoidHom.toFunctor
toMonoidHom
Monoid.toMulOneClass
symm
MulOne.toMul
MulOneClass.toMulOne
CategoryTheory.Functor.id
CategoryTheory.Equivalence.counitIso
toSingleObjEquiv
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
MonoidHomClass.toMonoidHom
MulEquiv
EquivLike.toFunLike
instEquivLike
MulEquivClass.instMonoidHomClass
instMulEquivClass
toSingleObjEquiv_counitIso_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
MonoidHom.toFunctor
toMonoidHom
Monoid.toMulOneClass
symm
MulOne.toMul
MulOneClass.toMulOne
CategoryTheory.Functor.id
CategoryTheory.Equivalence.counitIso
toSingleObjEquiv
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
MonoidHomClass.toMonoidHom
MulEquiv
EquivLike.toFunLike
instEquivLike
MulEquivClass.instMonoidHomClass
instMulEquivClass
toSingleObjEquiv_functor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Equivalence.functor
toSingleObjEquiv
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
instEquivLike
toSingleObjEquiv_functor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Equivalence.functor
toSingleObjEquiv
toSingleObjEquiv_inverse_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Equivalence.inverse
toSingleObjEquiv
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
instEquivLike
symm
toSingleObjEquiv_inverse_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Equivalence.inverse
toSingleObjEquiv
toSingleObjEquiv_unitIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
MonoidHom.toFunctor
toMonoidHom
Monoid.toMulOneClass
symm
MulOne.toMul
MulOneClass.toMulOne
CategoryTheory.Equivalence.unitIso
toSingleObjEquiv
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
MonoidHomClass.toMonoidHom
MulEquiv
EquivLike.toFunLike
instEquivLike
MulEquivClass.instMonoidHomClass
instMulEquivClass
toSingleObjEquiv_unitIso_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
MonoidHom.toFunctor
toMonoidHom
Monoid.toMulOneClass
symm
MulOne.toMul
MulOneClass.toMulOne
CategoryTheory.Equivalence.unitIso
toSingleObjEquiv
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
MonoidHomClass.toMonoidHom
MulEquiv
EquivLike.toFunLike
instEquivLike
MulEquivClass.instMonoidHomClass
instMulEquivClass

Units

Definitions

NameCategoryTheorems
toAut 📖CompOp
2 mathmath: toAut_hom, toAut_inv

Theorems

NameKindAssumesProvesValidatesDepends On
toAut_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.SingleObj.star
DFunLike.coe
MulEquiv
Units
CategoryTheory.Aut
instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
EquivLike.toFunLike
MulEquiv.instEquivLike
toAut
CategoryTheory.End
CategoryTheory.SingleObj.categoryStruct
MulOne.toOne
CategoryTheory.End.mul
CategoryTheory.SingleObj.toEnd
val
toAut_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
CategoryTheory.SingleObj.star
DFunLike.coe
MulEquiv
Units
CategoryTheory.Aut
instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
EquivLike.toFunLike
MulEquiv.instEquivLike
toAut
CategoryTheory.End
CategoryTheory.SingleObj.categoryStruct
MulOne.toOne
CategoryTheory.End.mul
CategoryTheory.SingleObj.toEnd
val
instInv

---

← Back to Index