Documentation Verification Report

Adjunction

📁 Source: Mathlib/CategoryTheory/Sites/Adjunction.lean

Statistics

MetricCount
Definitionsadjunction, sheafForget
2
Theoremsadjunction_counit_app_val, adjunction_unit_app_val, instIsLeftAdjointComposeAndSheafify, instIsRightAdjointSheafComposeOfHasWeakSheafify, instPreservesSheafificationOfIsLeftAdjoint, preservesSheafification_of_adjunction
6
Total8

CategoryTheory

Definitions

NameCategoryTheorems
sheafForget 📖CompOp

CategoryTheory.Sheaf

Definitions

NameCategoryTheorems
adjunction 📖CompOp
2 mathmath: adjunction_counit_app_val, adjunction_unit_app_val

Theorems

NameKindAssumesProvesValidatesDepends On
adjunction_counit_app_val 📖mathematicalHom.val
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.Functor.comp
CategoryTheory.sheafCompose
composeAndSheafify
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
adjunction
CategoryTheory.sheafifyLift
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringRight
val
CategoryTheory.Adjunction.whiskerRight
cond
cond
CategoryTheory.Adjunction.map_restrictFullyFaithful_counit_app
CategoryTheory.Functor.whiskerRight_id'
CategoryTheory.Adjunction.comp_counit_app
CategoryTheory.Category.id_comp
CategoryTheory.sheafificationAdjunction_counit_app_val
CategoryTheory.sheafifyMap_sheafifyLift
CategoryTheory.sheafifyLift.congr_simp
CategoryTheory.Category.comp_id
adjunction_unit_app_val 📖mathematicalHom.val
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
composeAndSheafify
CategoryTheory.sheafCompose
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
adjunction
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
val
CategoryTheory.Functor.whiskeringRight
CategoryTheory.sheafify
CategoryTheory.Adjunction.whiskerRight
CategoryTheory.Functor.whiskerRight
CategoryTheory.toSheafify
CategoryTheory.Adjunction.map_restrictFullyFaithful_unit_app
CategoryTheory.Adjunction.comp_unit_app
CategoryTheory.Functor.map_id
CategoryTheory.Functor.whiskerRight_id'
CategoryTheory.Category.comp_id
instIsLeftAdjointComposeAndSheafify 📖mathematicalCategoryTheory.Functor.IsLeftAdjoint
CategoryTheory.Sheaf
instCategorySheaf
composeAndSheafify
CategoryTheory.Adjunction.isLeftAdjoint
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.Adjunction.instIsRightAdjointRightAdjoint
instIsRightAdjointSheafComposeOfHasWeakSheafify 📖mathematicalCategoryTheory.Functor.IsRightAdjoint
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.sheafCompose
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Adjunction.isRightAdjoint
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
instPreservesSheafificationOfIsLeftAdjoint 📖mathematicalCategoryTheory.GrothendieckTopology.PreservesSheafificationpreservesSheafification_of_adjunction
preservesSheafification_of_adjunction 📖mathematicalCategoryTheory.GrothendieckTopology.PreservesSheafificationCategoryTheory.Adjunction.isRightAdjoint
CategoryTheory.MorphismProperty.inverseImage_iff
Equiv.comp_bijective
cond
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.NatTrans.ext'
CategoryTheory.NatTrans.comp_app
CategoryTheory.Adjunction.homEquiv_naturality_left
Equiv.bijective

---

← Back to Index