Documentation Verification Report

Canonical

📁 Source: Mathlib/CategoryTheory/Sites/Canonical.lean

Statistics

MetricCount
DefinitionsfullyFaithfulUliftYoneda, uliftYoneda, uliftYonedaCompSheafToPresheaf, uliftYonedaIsoYoneda, yoneda, yonedaCompSheafToPresheaf, yonedaFullyFaithful, yonedaULift, canonicalTopology, finestTopology, finestTopologySingle
11
TheoremsisSheaf_of_isRepresentable, le_canonical, of_isSheaf_yoneda_obj, instFaithfulSheafTypeUliftYoneda, instFaithfulSheafTypeYoneda, instFullSheafTypeUliftYoneda, instFullSheafTypeYoneda, instSubcanonicalCanonicalTopology, le_canonical, uliftYonedaCompSheafToPresheaf_hom_app_app, uliftYonedaCompSheafToPresheaf_inv_app_app, uliftYonedaIsoYoneda_hom_app_val_app, uliftYonedaIsoYoneda_inv_app_val_app_down, uliftYoneda_map_val_app_down, uliftYoneda_obj_val_map_down, uliftYoneda_obj_val_obj, yoneda_map_val, yoneda_obj_val, isSheafFor_bind, isSheafFor_trans, isSheaf_of_isRepresentable, isSheaf_yoneda_obj, le_finestTopology, sheaf_for_finestTopology
24
Total35

CategoryTheory.GrothendieckTopology

Definitions

NameCategoryTheorems
fullyFaithfulUliftYoneda 📖CompOp
uliftYoneda 📖CompOp
35 mathmath: yonedaULiftEquiv_apply, instFaithfulSheafTypeUliftYoneda, uliftYonedaEquiv_naturality, uliftYonedaEquiv_naturality', uliftYonedaEquiv_symm_map, yonedaULiftEquiv_naturality', instFullSheafTypeUliftYoneda, yonedaULiftEquiv_symm_naturality_left, yonedaULiftEquiv_symm_naturality_right, uliftYonedaEquiv_uliftYoneda_map, uliftYonedaCompSheafToPresheaf_inv_app_app, uliftYonedaCompSheafToPresheaf_hom_app_app, uliftYonedaEquiv_symm_app_apply, uliftYonedaIsoYoneda_hom_app_val_app, map_uliftYonedaEquiv', map_yonedaULiftEquiv', uliftYonedaEquiv_apply, uliftYonedaOpCompCoyoneda_hom_app_app_down, uliftYonedaEquiv_symm_naturality_left, uliftYonedaOpCompCoyoneda_app_app, yonedaULiftEquiv_naturality, map_uliftYonedaEquiv, uliftYonedaIsoYoneda_inv_app_val_app_down, uliftYonedaOpCompCoyoneda_inv_app_app, yonedaULiftEquiv_comp, yonedaULiftEquiv_symm_app_apply, yonedaULiftEquiv_symm_map, uliftYonedaEquiv_symm_naturality_right, yonedaULiftEquiv_yonedaULift_map, uliftYoneda_obj_val_obj, uliftYoneda_obj_val_map_down, map_yonedaULiftEquiv, uliftYoneda_map_val_app_down, uliftYonedaEquiv_comp, uliftYonedaOpCompCoyoneda_inv_app_app_val_app
uliftYonedaCompSheafToPresheaf 📖CompOp
3 mathmath: uliftYonedaCompSheafToPresheaf_inv_app_app, uliftYonedaCompSheafToPresheaf_hom_app_app, uliftYonedaOpCompCoyoneda_hom_app_app_down
uliftYonedaIsoYoneda 📖CompOp
2 mathmath: uliftYonedaIsoYoneda_hom_app_val_app, uliftYonedaIsoYoneda_inv_app_val_app_down
yoneda 📖CompOp
44 mathmath: preservesColimitsOfShape_yoneda_of_ofArrows_inj_mem, yonedaOpCompCoyoneda_hom_app_app_down, LightCondensed.ihomPoints_apply, yonedaULiftEquiv_apply, yonedaEquiv_symm_app_apply, yoneda_map_val, AlgebraicGeometry.Scheme.LocalRepresentability.instIsLocallySurjectiveHomYonedaGluedToSheafOfIsLocallySurjectiveZariskiTopologyDescFunctorOppositeType, instFullSheafTypeYoneda, yonedaEquiv_naturality', uliftYonedaEquiv_uliftYoneda_map, yonedaOpCompCoyoneda_inv_app_app, map_yonedaEquiv', yonedaEquiv_comp, yonedaEquiv_symm_map, uliftYonedaEquiv_symm_app_apply, uliftYonedaIsoYoneda_hom_app_val_app, AlgebraicGeometry.Scheme.LocalRepresentability.yoneda_toGlued_yonedaGluedToSheaf_assoc, AlgebraicGeometry.Scheme.LocalRepresentability.instIsIsoSheafZariskiTopologyTypeYonedaGluedToSheaf, preservesLimitsOfSize_yoneda, map_uliftYonedaEquiv', AlgebraicGeometry.Scheme.LocalRepresentability.yoneda_toGlued_yonedaGluedToSheaf, yoneda_obj_val, yonedaEquiv_naturality, AlgebraicGeometry.Scheme.LocalRepresentability.instIsLocallyInjectiveHomYonedaGluedToSheaf, map_yonedaULiftEquiv', uliftYonedaEquiv_apply, uliftYonedaOpCompCoyoneda_hom_app_app_down, LightCondensed.ihomPoints_symm_apply, instFaithfulSheafTypeYoneda, map_uliftYonedaEquiv, uliftYonedaIsoYoneda_inv_app_val_app_down, AlgebraicGeometry.Scheme.LocalRepresentability.yonedaGluedToSheaf_app_comp, yonedaULiftEquiv_symm_app_apply, yonedaEquiv_symm_naturality_left, map_yonedaEquiv, yonedaULiftEquiv_yonedaULift_map, uliftYoneda_obj_val_map_down, map_yonedaULiftEquiv, AlgebraicGeometry.Scheme.LocalRepresentability.yonedaGluedToSheaf_app_toGlued, uliftYoneda_map_val_app_down, yonedaEquiv_yoneda_map, yonedaEquiv_apply, uliftYonedaOpCompCoyoneda_inv_app_app_val_app, yonedaEquiv_symm_naturality_right
yonedaCompSheafToPresheaf 📖CompOp
2 mathmath: yonedaOpCompCoyoneda_hom_app_app_down, yonedaOpCompCoyoneda_inv_app_app
yonedaFullyFaithful 📖CompOp
yonedaULift 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instFaithfulSheafTypeUliftYoneda 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Sheaf.instCategorySheaf
uliftYoneda
CategoryTheory.Functor.FullyFaithful.faithful
instFaithfulSheafTypeYoneda 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Sheaf.instCategorySheaf
yoneda
CategoryTheory.Functor.FullyFaithful.faithful
instFullSheafTypeUliftYoneda 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Sheaf.instCategorySheaf
uliftYoneda
CategoryTheory.Functor.FullyFaithful.full
instFullSheafTypeYoneda 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Sheaf.instCategorySheaf
yoneda
CategoryTheory.Functor.FullyFaithful.full
instSubcanonicalCanonicalTopology 📖mathematicalSubcanonical
CategoryTheory.Sheaf.canonicalTopology
le_rfl
le_canonical 📖mathematicalCategoryTheory.GrothendieckTopology
instLEGrothendieckTopology
CategoryTheory.Sheaf.canonicalTopology
Subcanonical.le_canonical
uliftYonedaCompSheafToPresheaf_hom_app_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
uliftYoneda
CategoryTheory.sheafToPresheaf
CategoryTheory.Iso.hom
CategoryTheory.uliftYoneda
uliftYonedaCompSheafToPresheaf
uliftYonedaCompSheafToPresheaf_inv_app_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
uliftYoneda
CategoryTheory.sheafToPresheaf
CategoryTheory.Iso.inv
CategoryTheory.uliftYoneda
uliftYonedaCompSheafToPresheaf
uliftYonedaIsoYoneda_hom_app_val_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.sheafToPresheaf
uliftYoneda
yoneda
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Iso.hom
uliftYonedaIsoYoneda
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
uliftYonedaIsoYoneda_inv_app_val_app_down 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
yoneda
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.sheafToPresheaf
uliftYoneda
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Iso.inv
uliftYonedaIsoYoneda
uliftYoneda_map_val_app_down 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
yoneda
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.uliftFunctor
CategoryTheory.Sheaf.Hom.val
CategoryTheory.sheafCompose
CategoryTheory.Functor.map
uliftYoneda
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
uliftYoneda_obj_val_map_down 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
yoneda
CategoryTheory.Functor.map
uliftYoneda
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
Quiver.Hom
uliftYoneda_obj_val_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
uliftYoneda
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
yoneda_map_val 📖mathematicalCategoryTheory.Sheaf.Hom.val
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.map
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
yoneda
yoneda_obj_val 📖mathematicalCategoryTheory.Sheaf.val
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
yoneda
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.yoneda

CategoryTheory.GrothendieckTopology.Subcanonical

Theorems

NameKindAssumesProvesValidatesDepends On
isSheaf_of_isRepresentable 📖mathematicalCategoryTheory.Presieve.IsSheafCategoryTheory.Presieve.isSheaf_of_le
CategoryTheory.GrothendieckTopology.le_canonical
CategoryTheory.Sheaf.isSheaf_of_isRepresentable
le_canonical 📖mathematicalCategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instLEGrothendieckTopology
CategoryTheory.Sheaf.canonicalTopology
of_isSheaf_yoneda_obj 📖mathematicalCategoryTheory.Presieve.IsSheaf
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.GrothendieckTopology.SubcanonicalCategoryTheory.Sheaf.le_finestTopology

CategoryTheory.Sheaf

Definitions

NameCategoryTheorems
canonicalTopology 📖CompOp
6 mathmath: CategoryTheory.typesGrothendieckTopology_eq_canonical, CategoryTheory.GrothendieckTopology.instSubcanonicalCanonicalTopology, CategoryTheory.GrothendieckTopology.Subcanonical.le_canonical, isSheaf_of_isRepresentable, isSheaf_yoneda_obj, CategoryTheory.GrothendieckTopology.le_canonical
finestTopology 📖CompOp
2 mathmath: sheaf_for_finestTopology, le_finestTopology
finestTopologySingle 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isSheafFor_bind 📖mathematicalCategoryTheory.Presieve.IsSheafFor
CategoryTheory.Sieve.arrows
CategoryTheory.Presieve.IsSeparatedFor
CategoryTheory.Sieve.pullback
CategoryTheory.Sieve.bindCategoryTheory.Presieve.isSheafFor_bind
isSheafFor_trans 📖CategoryTheory.Presieve.IsSheafFor
CategoryTheory.Sieve.arrows
CategoryTheory.Presieve.IsSeparatedFor
CategoryTheory.Sieve.pullback
CategoryTheory.Presieve.isSheafFor_trans
isSheaf_of_isRepresentable 📖mathematicalCategoryTheory.Presieve.IsSheaf
canonicalTopology
CategoryTheory.Presieve.isSheaf_comp_uliftFunctor_iff
CategoryTheory.Presieve.isSheaf_iso
CategoryTheory.Functor.instIsRepresentableCompOppositeUliftFunctor
CategoryTheory.isSheaf_iff_isSheaf_of_type
CategoryTheory.GrothendieckTopology.HasSheafCompose.isSheaf
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.PreservesLimitsOfSize.preservesLimitsOfShape
CategoryTheory.Limits.Types.instPreservesLimitsOfSizeUliftFunctor
isSheaf_yoneda_obj
isSheaf_yoneda_obj 📖mathematicalCategoryTheory.Presieve.IsSheaf
canonicalTopology
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
sheaf_for_finestTopology
Set.mem_range_self
le_finestTopology 📖mathematicalCategoryTheory.Presieve.IsSheafCategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instLEGrothendieckTopology
finestTopology
CategoryTheory.GrothendieckTopology.pullback_stable
sheaf_for_finestTopology 📖mathematicalCategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Set
Set.instMembership
CategoryTheory.Presieve.IsSheaf
finestTopology
CategoryTheory.Sieve.pullback_id

---

← Back to Index