Documentation Verification Report

CartesianMonoidal

📁 Source: Mathlib/CategoryTheory/Sites/CartesianMonoidal.lean

Statistics

MetricCount
DefinitionscartesianMonoidalCategory, sheafToPresheafMonoidal
2
TheoremscartesianMonoidalCategoryFst_val, cartesianMonoidalCategoryLift_val, cartesianMonoidalCategorySnd_val, cartesianMonoidalCategoryWhiskerLeft_val, cartesianMonoidalCategoryWhiskerRight_val, tensorProd_isSheaf, tensorUnit_isSheaf, sheafToPresheaf_δ, sheafToPresheaf_ε, sheafToPresheaf_η, sheafToPresheaf_μ
11
Total13

CategoryTheory

Definitions

NameCategoryTheorems
sheafToPresheafMonoidal 📖CompOp
4 mathmath: sheafToPresheaf_μ, sheafToPresheaf_δ, sheafToPresheaf_η, sheafToPresheaf_ε

Theorems

NameKindAssumesProvesValidatesDepends On
sheafToPresheaf_δ 📖mathematicalFunctor.OplaxMonoidal.δ
Sheaf
Sheaf.instCategorySheaf
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Sheaf.cartesianMonoidalCategory
Functor
Opposite
Category.opposite
Functor.category
Functor.cartesianMonoidalCategory
sheafToPresheaf
Functor.Monoidal.toOplaxMonoidal
sheafToPresheafMonoidal
CategoryStruct.id
Category.toCategoryStruct
Functor.obj
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
sheafToPresheaf_ε 📖mathematicalFunctor.LaxMonoidal.ε
Sheaf
Sheaf.instCategorySheaf
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Sheaf.cartesianMonoidalCategory
Functor
Opposite
Category.opposite
Functor.category
Functor.cartesianMonoidalCategory
sheafToPresheaf
Functor.Monoidal.toLaxMonoidal
sheafToPresheafMonoidal
CategoryStruct.id
Category.toCategoryStruct
MonoidalCategoryStruct.tensorUnit
MonoidalCategory.toMonoidalCategoryStruct
sheafToPresheaf_η 📖mathematicalFunctor.OplaxMonoidal.η
Sheaf
Sheaf.instCategorySheaf
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Sheaf.cartesianMonoidalCategory
Functor
Opposite
Category.opposite
Functor.category
Functor.cartesianMonoidalCategory
sheafToPresheaf
Functor.Monoidal.toOplaxMonoidal
sheafToPresheafMonoidal
CategoryStruct.id
Category.toCategoryStruct
Functor.obj
MonoidalCategoryStruct.tensorUnit
MonoidalCategory.toMonoidalCategoryStruct
sheafToPresheaf_μ 📖mathematicalFunctor.LaxMonoidal.μ
Sheaf
Sheaf.instCategorySheaf
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
Sheaf.cartesianMonoidalCategory
Functor
Opposite
Category.opposite
Functor.category
Functor.cartesianMonoidalCategory
sheafToPresheaf
Functor.Monoidal.toLaxMonoidal
sheafToPresheafMonoidal
CategoryStruct.id
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Functor.obj

CategoryTheory.Sheaf

Definitions

NameCategoryTheorems
cartesianMonoidalCategory 📖CompOp
9 mathmath: cartesianMonoidalCategoryLift_val, CategoryTheory.sheafToPresheaf_μ, cartesianMonoidalCategorySnd_val, CategoryTheory.sheafToPresheaf_δ, cartesianMonoidalCategoryWhiskerRight_val, CategoryTheory.sheafToPresheaf_η, cartesianMonoidalCategoryFst_val, CategoryTheory.sheafToPresheaf_ε, cartesianMonoidalCategoryWhiskerLeft_val

Theorems

NameKindAssumesProvesValidatesDepends On
cartesianMonoidalCategoryFst_val 📖mathematicalHom.val
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
cartesianMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.cartesianMonoidalCategory
val
cartesianMonoidalCategoryLift_val 📖mathematicalHom.val
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
cartesianMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.lift
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.cartesianMonoidalCategory
val
cartesianMonoidalCategorySnd_val 📖mathematicalHom.val
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
cartesianMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.cartesianMonoidalCategory
val
cartesianMonoidalCategoryWhiskerLeft_val 📖mathematicalHom.val
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
cartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.cartesianMonoidalCategory
val
cartesianMonoidalCategoryWhiskerRight_val 📖mathematicalHom.val
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
cartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.cartesianMonoidalCategory
val
tensorProd_isSheaf 📖mathematicalCategoryTheory.Presheaf.IsSheaf
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.cartesianMonoidalCategory
val
isSheaf_of_isLimit
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
tensorUnit_isSheaf 📖mathematicalCategoryTheory.Presheaf.IsSheaf
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.Functor.cartesianMonoidalCategory
isSheaf_of_isLimit
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype

---

← Back to Index