Documentation Verification Report

ExtensiveSheaves

📁 Source: Mathlib/CategoryTheory/Sites/Coherent/ExtensiveSheaves.lean

Statistics

MetricCount
Definitions0
TheoremsisSheaf_iff_preservesFiniteProducts, arrows_nonempty_isColimit, isSheaf_iff_preservesFiniteProducts, isSheaf_yoneda_obj, subcanonical, instExtensiveOfArrowsι, instHasPairwisePullbacksOfExtensive, instPreservesFiniteProductsOppositeVal, isSheafFor_extensive_of_preservesFiniteProducts
9
Total9

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
instExtensiveOfArrowsι 📖mathematicalPresieve.Extensive
Limits.sigmaObj
Limits.hasColimitOfHasColimitsOfShape
Discrete
discreteCategory
Limits.hasColimitsOfShape_discrete
FinitaryPreExtensive.hasFiniteCoproducts
Discrete.functor
Presieve.ofArrows
Limits.Sigma.ι
Limits.hasColimitOfHasColimitsOfShape
Limits.hasColimitsOfShape_discrete
FinitaryPreExtensive.hasFiniteCoproducts
instHasPairwisePullbacksOfExtensive 📖mathematicalPresieve.HasPairwisePullbacksPresieve.Extensive.arrows_nonempty_isColimit
FinitaryPreExtensive.hasPullbacks_of_is_coproduct
instPreservesFiniteProductsOppositeVal 📖mathematicalLimits.PreservesFiniteProducts
Opposite
Category.opposite
Sheaf.val
extensiveTopology
Presheaf.isSheaf_iff_preservesFiniteProducts
Sheaf.cond
isSheafFor_extensive_of_preservesFiniteProducts 📖mathematicalPresieve.IsSheafForPresieve.Extensive.arrows_nonempty_isColimit
instHasPairwisePullbacksOfExtensive
nonempty_fintype
Presieve.isSheafFor_of_preservesProduct
UnivLE.small
univLE_of_max
UnivLE.self
Limits.PreservesLimitsOfShape.preservesLimit
Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts

CategoryTheory.Presheaf

Theorems

NameKindAssumesProvesValidatesDepends On
isSheaf_iff_preservesFiniteProducts 📖mathematicalIsSheaf
CategoryTheory.extensiveTopology
CategoryTheory.Limits.PreservesFiniteProducts
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
Finite.of_fintype
CategoryTheory.Presieve.isSheaf_iff_preservesFiniteProducts
IsSheaf.eq_1
CategoryTheory.Limits.comp_preservesLimitsOfShape
CategoryTheory.coyonedaPreservesLimitsOfShape

CategoryTheory.Presieve

Theorems

NameKindAssumesProvesValidatesDepends On
isSheaf_iff_preservesFiniteProducts 📖mathematicalIsSheaf
CategoryTheory.extensiveTopology
CategoryTheory.Limits.PreservesFiniteProducts
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.FinitaryExtensive.hasFiniteCoproducts
Finite.of_fintype
CategoryTheory.instHasPairwisePullbacksOfExtensive
CategoryTheory.instExtensiveOfArrowsι
CategoryTheory.instMonoι
preservesProduct_of_isSheafFor
isSheaf_coverage
CategoryTheory.extensiveTopology.eq_1
Empty.instIsEmpty
CategoryTheory.Limits.Sigma.hom_ext
Unique.instSubsingleton
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.FinitaryExtensive.isPullback_initial_to_sigma_ι
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Category.comp_id
CategoryTheory.IsIso.id
CategoryTheory.Limits.preservesLimit_of_iso_diagram
CategoryTheory.isSheafFor_extensive_of_preservesFiniteProducts

CategoryTheory.Presieve.Extensive

Theorems

NameKindAssumesProvesValidatesDepends On
arrows_nonempty_isColimit 📖mathematicalCategoryTheory.Presieve.ofArrows
CategoryTheory.Limits.IsColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor

CategoryTheory.extensiveTopology

Theorems

NameKindAssumesProvesValidatesDepends On
isSheaf_yoneda_obj 📖mathematicalCategoryTheory.Presieve.IsSheaf
CategoryTheory.extensiveTopology
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
eq_1
CategoryTheory.Presieve.isSheaf_coverage
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.FinitaryPreExtensive.hasFiniteCoproducts
CategoryTheory.isSheafFor_extensive_of_preservesFiniteProducts
CategoryTheory.Limits.instPreservesFiniteProductsOfPreservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.yoneda_preservesLimits
subcanonical 📖mathematicalCategoryTheory.GrothendieckTopology.Subcanonical
CategoryTheory.extensiveTopology
CategoryTheory.GrothendieckTopology.Subcanonical.of_isSheaf_yoneda_obj
isSheaf_yoneda_obj

---

← Back to Index