Documentation Verification Report

SequentialLimit

📁 Source: Mathlib/CategoryTheory/Sites/Coherent/SequentialLimit.lean

Statistics

MetricCount
Definitions0
Theoremsepi_π_app_zero_of_epi, isLocallySurjective_π_app_zero_of_isLocallySurjective_map
2
Total2

CategoryTheory.coherentTopology

Theorems

NameKindAssumesProvesValidatesDepends On
epi_π_app_zero_of_epi 📖mathematicalCategoryTheory.EffectiveEpi
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
Opposite.op
CategoryTheory.Limits.limit
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.limit.π
CategoryTheory.Epi
CategoryTheory.Sheaf
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CategoryTheory.types
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.homOfLE
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CategoryTheory.instHasFunctorialSurjectiveInjectiveFactorizationTypeHom
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Functor.corepresentable_preservesLimit
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
isLocallySurjective_π_app_zero_of_isLocallySurjective_map
isLocallySurjective_π_app_zero_of_isLocallySurjective_map 📖mathematicalCategoryTheory.Sheaf.IsLocallySurjective
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.homOfLE
CategoryTheory.EffectiveEpi
CategoryTheory.Limits.limit
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.limit.π
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
isLocallySurjective_iff
CategoryTheory.Limits.instPreservesFiniteProductsOfPreservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.Types.instPreservesLimitsOfSizeForgetTypeHom
CategoryTheory.regularTopology.isLocallySurjective_iff
CategoryTheory.Functor.ofOpSequence_map_homOfLE_succ
subcanonical
CategoryTheory.GrothendieckTopology.yonedaEquiv_comp
CategoryTheory.Limits.IsLimit.fac
CategoryTheory.GrothendieckTopology.yonedaEquiv_yoneda_map

---

← Back to Index