Documentation Verification Report

CompatiblePlus

📁 Source: Mathlib/CategoryTheory/Sites/CompatiblePlus.lean

Statistics

MetricCount
DefinitionsdiagramCompIso, plusCompIso, plusFunctorWhiskerLeftIso, plusFunctorWhiskerRightIso
4
TheoremsdiagramCompIso_hom_ι, diagramCompIso_hom_ι_assoc, plusCompIso_inv_eq_plusLift, plusCompIso_whiskerLeft, plusCompIso_whiskerLeft_assoc, plusCompIso_whiskerRight, plusCompIso_whiskerRight_assoc, plusFunctorWhiskerLeftIso_hom_app, plusFunctorWhiskerLeftIso_inv_app, plusFunctorWhiskerRightIso_hom_app, plusFunctorWhiskerRightIso_inv_app, toPlus_comp_plusCompIso_inv, whiskerRight_toPlus_comp_plusCompIso_hom, whiskerRight_toPlus_comp_plusCompIso_hom_assoc, ι_plusCompIso_hom, ι_plusCompIso_hom_assoc
16
Total20

CategoryTheory.GrothendieckTopology

Definitions

NameCategoryTheorems
diagramCompIso 📖CompOp
4 mathmath: ι_plusCompIso_hom_assoc, diagramCompIso_hom_ι, diagramCompIso_hom_ι_assoc, ι_plusCompIso_hom
plusCompIso 📖CompOp
14 mathmath: plusFunctorWhiskerLeftIso_inv_app, plusFunctorWhiskerRightIso_hom_app, plusCompIso_whiskerRight, ι_plusCompIso_hom_assoc, whiskerRight_toPlus_comp_plusCompIso_hom, plusCompIso_whiskerLeft_assoc, plusFunctorWhiskerLeftIso_hom_app, plusFunctorWhiskerRightIso_inv_app, toPlus_comp_plusCompIso_inv, plusCompIso_whiskerRight_assoc, whiskerRight_toPlus_comp_plusCompIso_hom_assoc, ι_plusCompIso_hom, plusCompIso_whiskerLeft, plusCompIso_inv_eq_plusLift
plusFunctorWhiskerLeftIso 📖CompOp
2 mathmath: plusFunctorWhiskerLeftIso_inv_app, plusFunctorWhiskerLeftIso_hom_app
plusFunctorWhiskerRightIso 📖CompOp
2 mathmath: plusFunctorWhiskerRightIso_hom_app, plusFunctorWhiskerRightIso_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
diagramCompIso_hom_ι 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Functor.comp
diagram
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.MulticospanIndex.left
Opposite.unop
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
diagramCompIso
CategoryTheory.Limits.Multiequalizer.ι
CategoryTheory.Functor.map
CategoryTheory.Limits.multiequalizer
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Category.assoc
CategoryTheory.Limits.HasLimit.isoOfNatIso_hom_π
CategoryTheory.Category.comp_id
CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp
diagramCompIso_hom_ι_assoc 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
diagram
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
diagramCompIso
CategoryTheory.Limits.MulticospanIndex.left
Opposite.unop
CategoryTheory.Limits.Multiequalizer.ι
CategoryTheory.Functor.map
CategoryTheory.Limits.multiequalizer
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
diagramCompIso_hom_ι
plusCompIso_inv_eq_plusLift 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.Presheaf.IsSheaf
CategoryTheory.Functor.comp
plusObj
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
plusCompIso
plusLift
CategoryTheory.Functor.whiskerRight
toPlus
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
plusLift_unique
toPlus_comp_plusCompIso_inv
plusCompIso_whiskerLeft 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
plusObj
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Iso.hom
plusCompIso
plusMap
CategoryTheory.NatTrans.ext'
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.NatTrans.naturality_assoc
ι_plusCompIso_hom
ι_plusCompIso_hom_assoc
CategoryTheory.Limits.ι_colimMap
CategoryTheory.Limits.Multiequalizer.hom_ext
CategoryTheory.Category.assoc
diagramCompIso_hom_ι
CategoryTheory.Limits.limit.lift_π
diagramCompIso_hom_ι_assoc
CategoryTheory.NatTrans.naturality
plusCompIso_whiskerLeft_assoc 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
plusObj
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Iso.hom
plusCompIso
plusMap
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
plusCompIso_whiskerLeft
plusCompIso_whiskerRight 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
plusObj
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.whiskerRight
plusMap
CategoryTheory.Iso.hom
plusCompIso
CategoryTheory.NatTrans.ext'
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
ι_plusCompIso_hom_assoc
CategoryTheory.Limits.ι_colimMap
CategoryTheory.Functor.map_comp
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Category.assoc
ι_plusCompIso_hom
CategoryTheory.Limits.Multiequalizer.hom_ext
diagramCompIso_hom_ι
CategoryTheory.Limits.Multiequalizer.lift_ι
diagramCompIso_hom_ι_assoc
plusCompIso_whiskerRight_assoc 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
plusObj
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.whiskerRight
plusMap
CategoryTheory.Iso.hom
plusCompIso
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
plusCompIso_whiskerRight
plusFunctorWhiskerLeftIso_hom_app 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
plusObj
CategoryTheory.Functor.comp
plusFunctor
CategoryTheory.Iso.hom
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
plusFunctorWhiskerLeftIso
plusCompIso
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
plusFunctorWhiskerLeftIso_inv_app 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
plusFunctor
plusObj
CategoryTheory.Iso.inv
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
plusFunctorWhiskerLeftIso
plusCompIso
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
plusFunctorWhiskerRightIso_hom_app 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
plusFunctor
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Iso.hom
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
plusFunctorWhiskerRightIso
plusObj
plusCompIso
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
plusFunctorWhiskerRightIso_inv_app 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
plusFunctor
CategoryTheory.Iso.inv
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
plusFunctorWhiskerRightIso
plusObj
plusCompIso
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
toPlus_comp_plusCompIso_inv 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
plusObj
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
toPlus
CategoryTheory.Iso.inv
plusCompIso
CategoryTheory.Functor.whiskerRight
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
whiskerRight_toPlus_comp_plusCompIso_hom
whiskerRight_toPlus_comp_plusCompIso_hom 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
plusObj
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.whiskerRight
toPlus
CategoryTheory.Iso.hom
plusCompIso
CategoryTheory.NatTrans.ext'
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
ι_plusCompIso_hom
CategoryTheory.Limits.Multiequalizer.hom_ext
diagramCompIso_hom_ι
CategoryTheory.Limits.limit.lift_π
whiskerRight_toPlus_comp_plusCompIso_hom_assoc 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
plusObj
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.whiskerRight
toPlus
CategoryTheory.Iso.hom
plusCompIso
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerRight_toPlus_comp_plusCompIso_hom
ι_plusCompIso_hom 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite.unop
diagram
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.colimit
plusObj
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.Limits.colimit.ι
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
plusCompIso
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
diagramCompIso
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.IsColimit.fac
CategoryTheory.Limits.HasColimit.isoOfNatIso_ι_hom
CategoryTheory.Category.assoc
ι_plusCompIso_hom_assoc 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite.unop
diagram
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.colimit
CategoryTheory.Functor.map
CategoryTheory.Limits.colimit.ι
plusObj
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
plusCompIso
diagramCompIso
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_plusCompIso_hom

---

← Back to Index