Documentation Verification Report

ConcreteSheafification

šŸ“ Source: Mathlib/CategoryTheory/Sites/ConcreteSheafification.lean

Statistics

MetricCount
DefinitionsmeqOfSep, mk, isoSheafify, sheafification, sheafify, sheafifyLift, sheafifyMap, toSheafification, toSheafify, Meq, equiv, instCoeFunForallToTypeObjOppositeOpY, mk, pullback, refine, plusPlusAdjunction, plusPlusSheaf
17
Theoremseq_mk_iff_exists, exists_of_sep, exists_rep, inj_of_sep, isSheaf_of_sep, isSheaf_plus_plus, res_mk_eq_mk_pullback, sep, toPlus_apply, toPlus_eq_mk, toPlus_mk, isIso_toSheafify, isoSheafify_hom, isoSheafify_inv, sheafification_map, sheafification_obj, sheafifyLift_unique, sheafifyMap_comp, sheafifyMap_id, sheafifyMap_sheafifyLift, sheafifyMap_sheafifyLift_assoc, sheafify_hom_ext, sheafify_isSheaf, toSheafification_app, toSheafify_naturality, toSheafify_naturality_assoc, toSheafify_sheafifyLift, toSheafify_sheafifyLift_assoc, condition, congr_apply, equiv_apply, equiv_symm_eq_apply, ext, ext_iff, mk_apply, pullback_apply, pullback_refine, refine_apply, mono_iff_presheaf_mono, plusPlusAdjunction_counit_app_val, plusPlusAdjunction_unit_app, plusPlusSheaf_map_val, plusPlusSheaf_obj_val, plusPlusSheaf_preservesZeroMorphisms, presheaf_mono_of_mono, sheafToPresheaf_isRightAdjoint
46
Total63

CategoryTheory

Definitions

NameCategoryTheorems
Meq šŸ“–CompOp
2 mathmath: Meq.equiv_symm_eq_apply, Meq.equiv_apply
plusPlusAdjunction šŸ“–CompOp
5 mathmath: GrothendieckTopology.instIsIsoFunctorOppositeSheafSheafComposeNatTransPlusPlusAdjunction, GrothendieckTopology.sheafToPresheaf_map_sheafComposeNatTrans_eq_sheafifyCompIso_inv, plusPlusAdjunction_counit_app_val, plusPlusAdjunction_unit_app, GrothendieckTopology.instIsIsoSheafAppFunctorOppositeSheafComposeNatTransPlusPlusAdjunction
plusPlusSheaf šŸ“–CompOp
10 mathmath: plusPlusSheaf_obj_val, plusPlusSheaf_map_val, GrothendieckTopology.instIsIsoFunctorOppositeSheafSheafComposeNatTransPlusPlusAdjunction, GrothendieckTopology.sheafToPresheaf_map_sheafComposeNatTrans_eq_sheafifyCompIso_inv, preservesFiniteLimits_presheafToSheaf, plusPlusAdjunction_counit_app_val, plusPlusSheaf_preservesZeroMorphisms, plusPlusAdjunction_unit_app, preservesLimitsOfShape_presheafToSheaf, GrothendieckTopology.instIsIsoSheafAppFunctorOppositeSheafComposeNatTransPlusPlusAdjunction

Theorems

NameKindAssumesProvesValidatesDepends On
plusPlusAdjunction_counit_app_val šŸ“–mathematicalLimits.PreservesLimitsOfShape
types
Limits.WalkingMulticospan
GrothendieckTopology.Cover.shape
Limits.WalkingMulticospan.instSmallCategory
forget
Limits.HasMultiequalizer
GrothendieckTopology.Cover.index
Limits.HasColimitsOfShape
Opposite
GrothendieckTopology.Cover
Category.opposite
Preorder.smallCategory
GrothendieckTopology.instPreorderCover
Limits.PreservesColimitsOfShape
Sheaf.Hom.val
Functor.obj
Functor
Functor.category
Sheaf
Sheaf.instCategorySheaf
plusPlusSheaf
sheafToPresheaf
Functor.id
NatTrans.app
Functor.comp
Adjunction.counit
plusPlusAdjunction
GrothendieckTopology.sheafifyLift
Sheaf.val
CategoryStruct.id
Category.toCategoryStruct
Sheaf.cond
——
plusPlusAdjunction_unit_app šŸ“–mathematicalLimits.PreservesLimitsOfShape
types
Limits.WalkingMulticospan
GrothendieckTopology.Cover.shape
Limits.WalkingMulticospan.instSmallCategory
forget
Limits.HasMultiequalizer
GrothendieckTopology.Cover.index
Limits.HasColimitsOfShape
Opposite
GrothendieckTopology.Cover
Category.opposite
Preorder.smallCategory
GrothendieckTopology.instPreorderCover
Limits.PreservesColimitsOfShape
NatTrans.app
Functor
Functor.category
Functor.id
Functor.comp
Sheaf
Sheaf.instCategorySheaf
plusPlusSheaf
sheafToPresheaf
Adjunction.unit
plusPlusAdjunction
GrothendieckTopology.toSheafify
—Category.comp_id
plusPlusSheaf_map_val šŸ“–mathematicalLimits.PreservesLimitsOfShape
types
Limits.WalkingMulticospan
GrothendieckTopology.Cover.shape
Limits.WalkingMulticospan.instSmallCategory
forget
Limits.HasMultiequalizer
GrothendieckTopology.Cover.index
Limits.HasColimitsOfShape
Opposite
GrothendieckTopology.Cover
Category.opposite
Preorder.smallCategory
GrothendieckTopology.instPreorderCover
Limits.PreservesColimitsOfShape
Sheaf.Hom.val
GrothendieckTopology.sheafify
GrothendieckTopology.sheafify_isSheaf
Functor.map
Functor
Functor.category
Sheaf
Sheaf.instCategorySheaf
plusPlusSheaf
GrothendieckTopology.sheafifyMap
—GrothendieckTopology.sheafify_isSheaf
plusPlusSheaf_obj_val šŸ“–mathematicalLimits.PreservesLimitsOfShape
types
Limits.WalkingMulticospan
GrothendieckTopology.Cover.shape
Limits.WalkingMulticospan.instSmallCategory
forget
Limits.HasMultiequalizer
GrothendieckTopology.Cover.index
Limits.HasColimitsOfShape
Opposite
GrothendieckTopology.Cover
Category.opposite
Preorder.smallCategory
GrothendieckTopology.instPreorderCover
Limits.PreservesColimitsOfShape
Sheaf.val
Functor.obj
Functor
Functor.category
Sheaf
Sheaf.instCategorySheaf
plusPlusSheaf
GrothendieckTopology.sheafify
——
plusPlusSheaf_preservesZeroMorphisms šŸ“–mathematicalLimits.PreservesLimitsOfShape
types
Limits.WalkingMulticospan
GrothendieckTopology.Cover.shape
Limits.WalkingMulticospan.instSmallCategory
forget
Limits.HasMultiequalizer
GrothendieckTopology.Cover.index
Limits.HasColimitsOfShape
Opposite
GrothendieckTopology.Cover
Category.opposite
Preorder.smallCategory
GrothendieckTopology.instPreorderCover
Limits.PreservesColimitsOfShape
Functor.PreservesZeroMorphisms
Functor
Functor.category
Sheaf
Sheaf.instCategorySheaf
Limits.instHasZeroMorphismsFunctor
Preadditive.preadditiveHasZeroMorphisms
instPreadditiveSheaf
plusPlusSheaf
—Sheaf.hom_ext
NatTrans.ext'
Limits.colimit.hom_ext
Limits.hasColimitOfHasColimitsOfShape
Limits.colimit.ι_map
Limits.comp_zero
GrothendieckTopology.plusMap_zero
GrothendieckTopology.diagramNatTrans_zero
Limits.zero_comp
presheaf_mono_of_mono šŸ“–mathematicalLimits.PreservesLimitsOfShape
types
Limits.WalkingMulticospan
GrothendieckTopology.Cover.shape
Limits.WalkingMulticospan.instSmallCategory
forget
Limits.HasMultiequalizer
GrothendieckTopology.Cover.index
Limits.HasColimitsOfShape
Opposite
GrothendieckTopology.Cover
Category.opposite
Preorder.smallCategory
GrothendieckTopology.instPreorderCover
Limits.PreservesColimitsOfShape
Mono
Functor
Functor.category
Sheaf.val
Sheaf.Hom.val
—Functor.map_mono
preservesMonomorphisms_of_preservesLimitsOfShape
Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
sheafToPresheaf_isRightAdjoint
sheafToPresheaf_isRightAdjoint šŸ“–mathematicalLimits.PreservesLimitsOfShape
types
Limits.WalkingMulticospan
GrothendieckTopology.Cover.shape
Limits.WalkingMulticospan.instSmallCategory
forget
Limits.HasMultiequalizer
GrothendieckTopology.Cover.index
Limits.HasColimitsOfShape
Opposite
GrothendieckTopology.Cover
Category.opposite
Preorder.smallCategory
GrothendieckTopology.instPreorderCover
Limits.PreservesColimitsOfShape
Functor.IsRightAdjoint
Functor
Functor.category
Sheaf
Sheaf.instCategorySheaf
sheafToPresheaf
—Adjunction.isRightAdjoint

CategoryTheory.GrothendieckTopology

Definitions

NameCategoryTheorems
isoSheafify šŸ“–CompOp
2 mathmath: isoSheafify_hom, isoSheafify_inv
sheafification šŸ“–CompOp
9 mathmath: sheafificationWhiskerRightIso_hom_app, preservesLimitsOfShape_sheafification, toSheafification_app, sheafification_obj, preservesFiniteLimits_sheafification, sheafificationWhiskerLeftIso_hom_app, sheafification_map, sheafificationWhiskerLeftIso_inv_app, sheafificationWhiskerRightIso_inv_app
sheafify šŸ“–CompOp
29 mathmath: isoSheafify_hom, toSheafify_naturality_assoc, sheafifyMap_sheafifyLift_assoc, whiskerRight_toSheafify_sheafifyCompIso_hom_assoc, sheafificationWhiskerRightIso_hom_app, toSheafify_sheafifyLift_assoc, isIso_toSheafify, CategoryTheory.plusPlusSheaf_obj_val, sheafifyCompIso_inv_eq_sheafifyLift, sheafifyMap_id, sheafifyMap_sheafifyLift, CategoryTheory.Presheaf.isLocallySurjective_toSheafify, CategoryTheory.plusPlusSheaf_map_val, CategoryTheory.Presheaf.isLocallyInjective_toSheafify, toSheafify_comp_sheafifyCompIso_inv_assoc, sheafification_obj, sheafToPresheaf_map_sheafComposeNatTrans_eq_sheafifyCompIso_inv, CategoryTheory.toSheafify_plusPlusIsoSheafify_hom, sheafify_isSheaf, sheafifyMap_comp, toSheafify_comp_sheafifyCompIso_inv, sheafificationWhiskerLeftIso_hom_app, isoSheafify_inv, sheafificationWhiskerLeftIso_inv_app, whiskerRight_toSheafify_sheafifyCompIso_hom, toSheafify_naturality, CategoryTheory.toSheafify_plusPlusIsoSheafify_hom_assoc, sheafificationWhiskerRightIso_inv_app, toSheafify_sheafifyLift
sheafifyLift šŸ“–CompOp
8 mathmath: sheafifyMap_sheafifyLift_assoc, toSheafify_sheafifyLift_assoc, sheafifyCompIso_inv_eq_sheafifyLift, sheafifyMap_sheafifyLift, CategoryTheory.plusPlusAdjunction_counit_app_val, isoSheafify_inv, sheafifyLift_unique, toSheafify_sheafifyLift
sheafifyMap šŸ“–CompOp
8 mathmath: toSheafify_naturality_assoc, sheafifyMap_sheafifyLift_assoc, sheafifyMap_id, sheafifyMap_sheafifyLift, CategoryTheory.plusPlusSheaf_map_val, sheafifyMap_comp, sheafification_map, toSheafify_naturality
toSheafification šŸ“–CompOp
1 mathmath: toSheafification_app
toSheafify šŸ“–CompOp
17 mathmath: isoSheafify_hom, toSheafify_naturality_assoc, whiskerRight_toSheafify_sheafifyCompIso_hom_assoc, toSheafify_sheafifyLift_assoc, isIso_toSheafify, sheafifyCompIso_inv_eq_sheafifyLift, CategoryTheory.Presheaf.isLocallySurjective_toSheafify, toSheafification_app, CategoryTheory.Presheaf.isLocallyInjective_toSheafify, toSheafify_comp_sheafifyCompIso_inv_assoc, CategoryTheory.toSheafify_plusPlusIsoSheafify_hom, toSheafify_comp_sheafifyCompIso_inv, CategoryTheory.plusPlusAdjunction_unit_app, whiskerRight_toSheafify_sheafifyCompIso_hom, toSheafify_naturality, CategoryTheory.toSheafify_plusPlusIsoSheafify_hom_assoc, toSheafify_sheafifyLift

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_toSheafify šŸ“–mathematicalCategoryTheory.Limits.HasMultiequalizer
Cover.shape
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Presheaf.IsSheaf
CategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
sheafify
toSheafify
—CategoryTheory.IsIso.comp_isIso
isIso_toPlus_of_isSheaf
CategoryTheory.Functor.map_isIso
isoSheafify_hom šŸ“–mathematicalCategoryTheory.Limits.HasMultiequalizer
Cover.shape
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Presheaf.IsSheaf
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
sheafify
isoSheafify
toSheafify
——
isoSheafify_inv šŸ“–mathematicalCategoryTheory.Limits.HasMultiequalizer
Cover.shape
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Presheaf.IsSheaf
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
sheafify
isoSheafify
sheafifyLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
—sheafifyLift_unique
CategoryTheory.Category.id_comp
sheafification_map šŸ“–mathematicalCategoryTheory.Limits.HasMultiequalizer
Cover.shape
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
sheafification
sheafifyMap
——
sheafification_obj šŸ“–mathematicalCategoryTheory.Limits.HasMultiequalizer
Cover.shape
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
sheafification
sheafify
——
sheafifyLift_unique šŸ“–mathematicalCategoryTheory.Limits.HasMultiequalizer
Cover.shape
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Presheaf.IsSheaf
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
sheafify
toSheafify
sheafifyLift—plusLift_unique
CategoryTheory.Category.assoc
plusMap_toPlus
sheafifyMap_comp šŸ“–mathematicalCategoryTheory.Limits.HasMultiequalizer
Cover.shape
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
sheafifyMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
sheafify
—plusMap_comp
sheafifyMap_id šŸ“–mathematicalCategoryTheory.Limits.HasMultiequalizer
Cover.shape
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
sheafifyMap
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
sheafify
—plusMap_id
sheafifyMap_sheafifyLift šŸ“–mathematicalCategoryTheory.Limits.HasMultiequalizer
Cover.shape
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Presheaf.IsSheaf
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
sheafify
sheafifyMap
sheafifyLift
—sheafifyLift_unique
CategoryTheory.Category.assoc
toSheafify_naturality
toSheafify_sheafifyLift
sheafifyMap_sheafifyLift_assoc šŸ“–mathematicalCategoryTheory.Limits.HasMultiequalizer
Cover.shape
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Presheaf.IsSheaf
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
sheafify
sheafifyMap
sheafifyLift
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
sheafifyMap_sheafifyLift
sheafify_hom_ext šŸ“–ā€”CategoryTheory.Limits.HasMultiequalizer
Cover.shape
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Presheaf.IsSheaf
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
sheafify
toSheafify
——plus_hom_ext
CategoryTheory.Category.assoc
plusMap_toPlus
sheafify_isSheaf šŸ“–mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.types
CategoryTheory.Limits.WalkingMulticospan
Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.forget
CategoryTheory.Limits.HasMultiequalizer
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.Presheaf.IsSheaf
sheafify
—Plus.isSheaf_plus_plus
toSheafification_app šŸ“–mathematicalCategoryTheory.Limits.HasMultiequalizer
Cover.shape
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
sheafification
toSheafification
toSheafify
——
toSheafify_naturality šŸ“–mathematicalCategoryTheory.Limits.HasMultiequalizer
Cover.shape
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
sheafify
toSheafify
sheafifyMap
—plusMap_toPlus
toPlus_naturality
toPlus_naturality_assoc
CategoryTheory.Category.assoc
toSheafify_naturality_assoc šŸ“–mathematicalCategoryTheory.Limits.HasMultiequalizer
Cover.shape
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
sheafify
toSheafify
sheafifyMap
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toSheafify_naturality
toSheafify_sheafifyLift šŸ“–mathematicalCategoryTheory.Limits.HasMultiequalizer
Cover.shape
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Presheaf.IsSheaf
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
sheafify
toSheafify
sheafifyLift
—plusMap_toPlus
toPlus_naturality
CategoryTheory.Category.assoc
toPlus_plusLift
toSheafify_sheafifyLift_assoc šŸ“–mathematicalCategoryTheory.Limits.HasMultiequalizer
Cover.shape
Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Presheaf.IsSheaf
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
sheafify
toSheafify
sheafifyLift
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toSheafify_sheafifyLift

CategoryTheory.GrothendieckTopology.Plus

Definitions

NameCategoryTheorems
meqOfSep šŸ“–CompOp—
mk šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
eq_mk_iff_exists šŸ“–mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.types
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.forget
CategoryTheory.Limits.HasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
CategoryTheory.Limits.HasMultiequalizer
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.Meq.refine—CategoryTheory.Limits.Concrete.colimit_exists_of_rep_eq
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
CategoryTheory.Meq.ext
CategoryTheory.leOfHom
CategoryTheory.GrothendieckTopology.Cover.Arrow.hf
CategoryTheory.ConcreteCategory.comp_apply
CategoryTheory.Limits.Multiequalizer.lift_ι
CategoryTheory.Meq.equiv_symm_eq_apply
CategoryTheory.Limits.Concrete.colimit_rep_eq_of_exists
CategoryTheory.Limits.Concrete.multiequalizer_ext
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
exists_of_sep šŸ“–mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.types
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.forget
CategoryTheory.Limits.HasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
CategoryTheory.Limits.HasMultiequalizer
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.GrothendieckTopology.plusObj—inj_of_sep
CategoryTheory.Meq.ext
res_mk_eq_mk_pullback
sep
CategoryTheory.Sieve.le_pullback_bind
CategoryTheory.GrothendieckTopology.Cover.Arrow.hf
CategoryTheory.Sieve.downward_closed
toPlus_apply
CategoryTheory.GrothendieckTopology.Cover.Arrow.middle_spec
CategoryTheory.Meq.condition
exists_rep
exists_rep šŸ“–ā€”CategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.types
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.forget
CategoryTheory.Limits.HasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
CategoryTheory.Limits.HasMultiequalizer
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.PreservesColimitsOfShape
——CategoryTheory.Limits.Concrete.colimit_exists_rep
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
Equiv.symm_apply_apply
inj_of_sep šŸ“–mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.types
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.forget
CategoryTheory.Limits.HasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
CategoryTheory.Limits.HasMultiequalizer
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.Functor.obj
Opposite.op
CategoryTheory.GrothendieckTopology.plusObj
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.GrothendieckTopology.toPlus
—eq_mk_iff_exists
isSheaf_of_sep šŸ“–mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.types
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.forget
CategoryTheory.Limits.HasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
CategoryTheory.Limits.HasMultiequalizer
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.Presheaf.IsSheaf
CategoryTheory.GrothendieckTopology.plusObj
—CategoryTheory.Presheaf.isSheaf_iff_multiequalizer
CategoryTheory.isIso_of_reflects_iso
CategoryTheory.isIso_iff_bijective
sep
CategoryTheory.Meq.equiv_apply
CategoryTheory.ConcreteCategory.comp_apply
CategoryTheory.Limits.Multiequalizer.lift_ι
exists_of_sep
Equiv.injective
CategoryTheory.Meq.ext
isSheaf_plus_plus šŸ“–mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.types
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.forget
CategoryTheory.Limits.HasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
CategoryTheory.Limits.HasMultiequalizer
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.Presheaf.IsSheaf
CategoryTheory.GrothendieckTopology.plusObj
—isSheaf_of_sep
sep
res_mk_eq_mk_pullback šŸ“–mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.types
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.forget
CategoryTheory.Limits.HasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
CategoryTheory.Limits.HasMultiequalizer
CategoryTheory.GrothendieckTopology.Cover.index
DFunLike.coe
CategoryTheory.Functor.obj
CategoryTheory.GrothendieckTopology.plusObj
Opposite.op
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.GrothendieckTopology.pullback
CategoryTheory.Meq.pullback
—CategoryTheory.comp_apply
CategoryTheory.Limits.ι_colimMap_assoc
CategoryTheory.Limits.colimit.ι_pre
Equiv.injective
Equiv.apply_symm_apply
CategoryTheory.Meq.ext
CategoryTheory.GrothendieckTopology.Cover.Arrow.hf
CategoryTheory.ConcreteCategory.comp_apply
CategoryTheory.Limits.Multiequalizer.lift_ι
CategoryTheory.Meq.equiv_symm_eq_apply
sep šŸ“–ā€”CategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.types
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.forget
CategoryTheory.Limits.HasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
CategoryTheory.Limits.HasMultiequalizer
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.PreservesColimitsOfShape
DFunLike.coe
CategoryTheory.Functor.obj
CategoryTheory.GrothendieckTopology.plusObj
Opposite.op
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.GrothendieckTopology.Cover.Arrow.f
——exists_rep
eq_mk_iff_exists
CategoryTheory.leOfHom
CategoryTheory.Meq.ext
CategoryTheory.Meq.congr_apply
CategoryTheory.GrothendieckTopology.Cover.Arrow.middle_spec
res_mk_eq_mk_pullback
toPlus_apply šŸ“–mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.types
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.forget
CategoryTheory.Limits.HasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
CategoryTheory.Limits.HasMultiequalizer
CategoryTheory.GrothendieckTopology.Cover.index
DFunLike.coe
CategoryTheory.Functor.obj
Opposite.op
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
CategoryTheory.GrothendieckTopology.plusObj
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.GrothendieckTopology.toPlus
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.GrothendieckTopology.Cover.Arrow.f
—CategoryTheory.ConcreteCategory.comp_apply
CategoryTheory.Limits.ι_colimMap_assoc
CategoryTheory.Limits.colimit.ι_pre
OrderTop.le_top
CategoryTheory.Limits.colimit.w
CategoryTheory.Limits.Concrete.multiequalizer_ext
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.Multiequalizer.lift_ι
CategoryTheory.Meq.equiv_symm_eq_apply
CategoryTheory.Functor.map_id
CategoryTheory.id_apply
CategoryTheory.Meq.condition
toPlus_eq_mk šŸ“–mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.types
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.forget
CategoryTheory.Limits.HasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
CategoryTheory.Limits.HasMultiequalizer
CategoryTheory.GrothendieckTopology.Cover.index
DFunLike.coe
CategoryTheory.Functor.obj
Opposite.op
CategoryTheory.GrothendieckTopology.plusObj
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.GrothendieckTopology.toPlus
Top.top
OrderTop.toTop
Preorder.toLE
CategoryTheory.GrothendieckTopology.Cover.instOrderTop
——
toPlus_mk šŸ“–mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.types
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.forget
CategoryTheory.Limits.HasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
CategoryTheory.Limits.HasMultiequalizer
CategoryTheory.GrothendieckTopology.Cover.index
DFunLike.coe
CategoryTheory.Functor.obj
Opposite.op
CategoryTheory.GrothendieckTopology.plusObj
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.GrothendieckTopology.toPlus
—OrderTop.le_top
CategoryTheory.Limits.colimit.w
CategoryTheory.ConcreteCategory.comp_apply
CategoryTheory.Limits.Concrete.multiequalizer_ext
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Category.assoc
CategoryTheory.Limits.Multiequalizer.lift_ι
CategoryTheory.Meq.equiv_symm_eq_apply

CategoryTheory.Meq

Definitions

NameCategoryTheorems
equiv šŸ“–CompOp
2 mathmath: equiv_symm_eq_apply, equiv_apply
instCoeFunForallToTypeObjOppositeOpY šŸ“–CompOp—
mk šŸ“–CompOp—
pullback šŸ“–CompOp
3 mathmath: pullback_refine, CategoryTheory.GrothendieckTopology.Plus.res_mk_eq_mk_pullback, pullback_apply
refine šŸ“–CompOp
3 mathmath: pullback_refine, CategoryTheory.GrothendieckTopology.Plus.eq_mk_iff_exists, refine_apply

Theorems

NameKindAssumesProvesValidatesDepends On
condition šŸ“–mathematical—DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
CategoryTheory.GrothendieckTopology.Cover.Relation.fst
CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation.Z
CategoryTheory.GrothendieckTopology.Cover.Relation.snd
CategoryTheory.GrothendieckTopology.Cover.Relation.r
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation.g₁
CategoryTheory.Limits.MulticospanShape.fst
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation.gā‚‚
CategoryTheory.Limits.MulticospanShape.snd
——
congr_apply šŸ“–ā€”CategoryTheory.Sieve.arrows
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
———
equiv_apply šŸ“–mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.types
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.forget
DFunLike.coe
Equiv
CategoryTheory.ToType
CategoryTheory.Limits.multiequalizer
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Meq
EquivLike.toFunLike
Equiv.instEquivLike
equiv
CategoryTheory.Limits.MulticospanIndex.left
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.Multiequalizer.ι
——
equiv_symm_eq_apply šŸ“–mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.types
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.forget
DFunLike.coe
CategoryTheory.Limits.multiequalizer
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.MulticospanIndex.left
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.Multiequalizer.ι
Equiv
CategoryTheory.Meq
CategoryTheory.ToType
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equiv
—Equiv.apply_symm_apply
ext šŸ“–ā€”ā€”ā€”ā€”ā€”
ext_iff šŸ“–ā€”ā€”ā€”ā€”ext
mk_apply šŸ“–mathematical—DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.GrothendieckTopology.Cover.Arrow.f
——
pullback_apply šŸ“–mathematical—pullback
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
CategoryTheory.Functor.obj
CategoryTheory.GrothendieckTopology.Cover
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
CategoryTheory.GrothendieckTopology.pullback
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.GrothendieckTopology.Cover.Arrow.f
CategoryTheory.GrothendieckTopology.Cover.Arrow.hf
——
pullback_refine šŸ“–mathematical—refine
CategoryTheory.Functor.obj
CategoryTheory.GrothendieckTopology.Cover
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
CategoryTheory.GrothendieckTopology.pullback
pullback
CategoryTheory.Functor.map
——
refine_apply šŸ“–mathematical—refine
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
CategoryTheory.GrothendieckTopology.Cover.Arrow.f
CategoryTheory.leOfHom
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.GrothendieckTopology.instPreorderCover
CategoryTheory.GrothendieckTopology.Cover.Arrow.hf
——

CategoryTheory.Sheaf.Hom

Theorems

NameKindAssumesProvesValidatesDepends On
mono_iff_presheaf_mono šŸ“–mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
CategoryTheory.types
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.forget
CategoryTheory.Limits.HasMultiequalizer
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.HasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.Mono
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Sheaf.val
val
—CategoryTheory.presheaf_mono_of_mono
mono_of_presheaf_mono

---

← Back to Index