Documentation Verification Report

ConstantSheaf

📁 Source: Mathlib/CategoryTheory/Sites/ConstantSheaf.lean

Statistics

MetricCount
DefinitionsIsConstant, constantCommuteCompose, constantPresheafAdj, constantSheaf, constantSheafAdj, equivCommuteConstant, equivCommuteConstant'
7
Theoremsmem_essImage, instIsIsoAppCounitConstantSheafAdjOfFaithfulOfFullConstantSheafOfIsConstant, isConstant_congr, isConstant_iff_forget, isConstant_iff_isIso_counit_app, isConstant_iff_isIso_counit_app', isConstant_iff_mem_essImage, isConstant_iff_of_equivalence, isConstant_of_forget, isConstant_of_isIso_counit_app, isConstant_of_iso, mem_essImage_of_isConstant, constantCommuteCompose_hom_app_val, constantPresheafAdj_counit_app_app, constantPresheafAdj_unit_app, constantSheafAdj_counit_app, constantSheafAdj_counit_w, instIsConstantObjSheafSheafCompose
18
Total25

CategoryTheory

Definitions

NameCategoryTheorems
constantCommuteCompose 📖CompOp
2 mathmath: constantCommuteCompose_hom_app_val, constantSheafAdj_counit_w
constantPresheafAdj 📖CompOp
3 mathmath: constantPresheafAdj_counit_app_app, constantSheafAdj_counit_app, constantPresheafAdj_unit_app
constantSheaf 📖CompOp
17 mathmath: CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, constantCommuteCompose_hom_app_val, Sheaf.mem_essImage_of_isConstant, Sheaf.instIsIsoAppCounitConstantSheafAdjOfFaithfulOfFullConstantSheafOfIsConstant, LightCondMod.LocallyConstant.instFullModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf, Sheaf.ΓObjEquivHom_naturality_symm, CondensedMod.LocallyConstant.instFaithfulSheafCompHausCoherentTopologyTypeConstantSheaf, Sheaf.ΓObjEquivHom_naturality, LightCondMod.LocallyConstant.instFaithfulModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf, CondensedMod.LocallyConstant.instFullSheafCompHausCoherentTopologyTypeConstantSheaf, LightCondMod.LocallyConstant.instFullSheafLightProfiniteCoherentTopologyTypeConstantSheaf, constantSheafAdj_counit_w, LightCondMod.LocallyConstant.instFaithfulSheafLightProfiniteCoherentTopologyTypeConstantSheaf, constantSheafAdj_counit_app, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, Sheaf.isConstant_iff_isIso_counit_app, Sheaf.IsConstant.mem_essImage
constantSheafAdj 📖CompOp
4 mathmath: Sheaf.instIsIsoAppCounitConstantSheafAdjOfFaithfulOfFullConstantSheafOfIsConstant, constantSheafAdj_counit_w, constantSheafAdj_counit_app, Sheaf.isConstant_iff_isIso_counit_app
equivCommuteConstant 📖CompOp
equivCommuteConstant' 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
constantCommuteCompose_hom_app_val 📖mathematicalSheaf.Hom.val
Functor.obj
Sheaf
Sheaf.instCategorySheaf
Functor.comp
constantSheaf
sheafCompose
NatTrans.app
Iso.hom
Functor
Functor.category
constantCommuteCompose
CategoryStruct.comp
Opposite
Category.opposite
Category.toCategoryStruct
sheafify
Functor.const
Iso.inv
sheafifyComposeIso
sheafifyMap
Functor.constComp
constantPresheafAdj_counit_app_app 📖mathematicalNatTrans.app
Opposite
Category.opposite
Functor.obj
Functor
Functor.category
Functor.comp
evaluation
Opposite.op
Functor.const
Functor.id
Adjunction.counit
constantPresheafAdj
Functor.map
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
Limits.IsTerminal.from
constantPresheafAdj_unit_app 📖mathematicalNatTrans.app
Functor.comp
Functor
Opposite
Category.opposite
Functor.category
Functor.const
Functor.obj
evaluation
Opposite.op
Functor.id
Adjunction.unit
constantPresheafAdj
CategoryStruct.id
Category.toCategoryStruct
constantSheafAdj_counit_app 📖mathematicalNatTrans.app
Sheaf
Sheaf.instCategorySheaf
Functor.comp
Functor
Opposite
Category.opposite
Functor.category
sheafToPresheaf
Functor.obj
evaluation
Opposite.op
Functor.const
presheafToSheaf
Functor.id
Adjunction.counit
constantSheaf
sheafSections
constantSheafAdj
CategoryStruct.comp
Category.toCategoryStruct
Sheaf.val
Functor.map
constantPresheafAdj
sheafificationAdjunction
Category.comp_id
Category.id_comp
constantSheafAdj_counit_w 📖mathematicalCategoryStruct.comp
Sheaf
Category.toCategoryStruct
Sheaf.instCategorySheaf
Functor.obj
Functor.comp
constantSheaf
sheafCompose
Opposite
Category.opposite
Sheaf.val
Opposite.op
Functor.id
NatTrans.app
Iso.hom
Functor
Functor.category
constantCommuteCompose
sheafSections
Adjunction.counit
constantSheafAdj
Functor.map
Sheaf.hom_ext
Sheaf.comp_val
constantCommuteCompose_hom_app_val
Category.assoc
Iso.inv_comp_eq
sheafify_hom_ext
Sheaf.cond
NatTrans.ext'
constantSheafAdj_counit_app
sheafificationAdjunction_counit_app_val
sheafifyMap_sheafifyLift
sheafifyLift.congr_simp
Category.comp_id
toSheafify_sheafifyLift
Category.id_comp
Functor.map_comp
sheafComposeIso_hom_fac_assoc
instIsConstantObjSheafSheafCompose 📖mathematicalSheaf.IsConstant
Functor.obj
Sheaf
Sheaf.instCategorySheaf
sheafCompose

CategoryTheory.Sheaf

Definitions

NameCategoryTheorems
IsConstant 📖CompData
12 mathmath: CondensedMod.isDiscrete_tfae, isConstant_of_isIso_counit_app, isConstant_iff_forget, isConstant_congr, isConstant_iff_isIso_counit_app', CondensedSet.isDiscrete_tfae, isConstant_iff_mem_essImage, isConstant_iff_of_equivalence, isConstant_of_forget, CategoryTheory.instIsConstantObjSheafSheafCompose, isConstant_iff_isIso_counit_app, isConstant_of_iso

Theorems

NameKindAssumesProvesValidatesDepends On
instIsIsoAppCounitConstantSheafAdjOfFaithfulOfFullConstantSheafOfIsConstant 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.sheafSections
Opposite.op
CategoryTheory.constantSheaf
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
CategoryTheory.constantSheafAdj
CategoryTheory.Adjunction.isIso_counit_app_iff_mem_essImage
mem_essImage_of_isConstant
isConstant_congr 📖mathematicalIsConstantCategoryTheory.Functor.essImage.ofIso
mem_essImage_of_isConstant
isConstant_iff_forget 📖mathematicalIsConstant
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.sheafCompose
CategoryTheory.instIsConstantObjSheafSheafCompose
isConstant_of_forget
isConstant_iff_isIso_counit_app 📖mathematicalIsConstant
CategoryTheory.IsIso
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.sheafSections
Opposite.op
CategoryTheory.constantSheaf
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
CategoryTheory.constantSheafAdj
instIsIsoAppCounitConstantSheafAdjOfFaithfulOfFullConstantSheafOfIsConstant
isConstant_iff_isIso_counit_app' 📖mathematicalIsConstant
CategoryTheory.IsIso
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.sheafSections
Opposite.op
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
isConstant_iff_mem_essImage
CategoryTheory.Adjunction.isIso_counit_app_iff_mem_essImage
isConstant_iff_mem_essImage 📖mathematicalIsConstant
CategoryTheory.Functor.essImage
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.Functor.essImage_eq_of_natIso
isConstant_iff_of_equivalence 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.StructuredArrow
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.instCategoryStructuredArrow
IsConstant
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.IsDenseSubsite.sheafEquiv
isConstant_of_forget 📖mathematicalIsConstantCategoryTheory.constantSheafAdj_counit_w
CategoryTheory.IsIso.comp_isIso
CategoryTheory.NatIso.hom_app_isIso
instIsIsoAppCounitConstantSheafAdjOfFaithfulOfFullConstantSheafOfIsConstant
isConstant_iff_isIso_counit_app
CategoryTheory.isIso_of_reflects_iso
isConstant_of_isIso_counit_app 📖mathematicalIsConstant
isConstant_of_iso 📖mathematicalIsConstant
mem_essImage_of_isConstant 📖mathematicalCategoryTheory.Functor.essImage
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.constantSheaf
IsConstant.mem_essImage

CategoryTheory.Sheaf.IsConstant

Theorems

NameKindAssumesProvesValidatesDepends On
mem_essImage 📖mathematicalCategoryTheory.Functor.essImage
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.constantSheaf

---

← Back to Index