Documentation Verification Report

CoverLifting

📁 Source: Mathlib/CategoryTheory/Sites/CoverLifting.lean

Statistics

MetricCount
DefinitionsIsCocontinuous, pushforwardContinuousSheafificationCompatibility, sheafAdjunctionCocontinuous, sheafPushforwardCocontinuous, sheafPushforwardCocontinuousCompSheafToPresheafIso, isLimitMultifork, liftAux
7
Theoremscover_lift, cover_lift, pushforwardContinuousSheafificationCompatibility_hom_app_val, sheafAdjunctionCocontinuous_counit_app_val, sheafAdjunctionCocontinuous_homEquiv_apply_val, sheafAdjunctionCocontinuous_unit_app_val, sheafPushforwardCocontinuousCompSheafToPresheafIso_hom, sheafPushforwardCocontinuousCompSheafToPresheafIso_inv, toSheafify_pullbackSheafificationCompatibility, fac, fac', fac_assoc, hom_ext, liftAux_map, liftAux_map', isCocontinuous_comp, isCocontinuous_id, ran_isSheaf_of_isCocontinuous
18
Total25

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
isCocontinuous_comp 📖mathematicalFunctor.IsCocontinuous
Functor.comp
Functor.cover_lift
isCocontinuous_id 📖mathematicalFunctor.IsCocontinuous
Functor.id
Sieve.functorPullback_id
ran_isSheaf_of_isCocontinuous 📖mathematicalFunctor.HasPointwiseRightKanExtension
Opposite
Category.opposite
Functor.op
Presheaf.IsSheaf
Functor.obj
Functor
Functor.category
Functor.ran
Functor.instHasRightKanExtension
Sheaf.val
Functor.instHasRightKanExtension
Presheaf.isSheaf_iff_multifork
Sheaf.cond

CategoryTheory.Functor

Definitions

NameCategoryTheorems
IsCocontinuous 📖CompData
7 mathmath: inducedTopology_isCocontinuous, CategoryTheory.isCocontinuous_comp, CategoryTheory.GrothendieckTopology.instIsCocontinuousOverForgetOver, IsDenseSubsite.instIsCocontinuous, CategoryTheory.instIsCocontinuousOverLeftDiscretePUnitIteratedSliceBackwardOver, CategoryTheory.isCocontinuous_id, CategoryTheory.instIsCocontinuousOverLeftDiscretePUnitIteratedSliceForwardOver
pushforwardContinuousSheafificationCompatibility 📖CompOp
2 mathmath: toSheafify_pullbackSheafificationCompatibility, pushforwardContinuousSheafificationCompatibility_hom_app_val
sheafAdjunctionCocontinuous 📖CompOp
4 mathmath: IsDenseSubsite.instIsIsoSheafAppCounitSheafAdjunctionCocontinuous, sheafAdjunctionCocontinuous_counit_app_val, sheafAdjunctionCocontinuous_homEquiv_apply_val, sheafAdjunctionCocontinuous_unit_app_val
sheafPushforwardCocontinuous 📖CompOp
7 mathmath: IsDenseSubsite.instIsIsoSheafAppCounitSheafAdjunctionCocontinuous, IsDenseSubsite.sheafEquiv_functor, sheafAdjunctionCocontinuous_counit_app_val, sheafPushforwardCocontinuousCompSheafToPresheafIso_inv, sheafPushforwardCocontinuousCompSheafToPresheafIso_hom, sheafAdjunctionCocontinuous_homEquiv_apply_val, sheafAdjunctionCocontinuous_unit_app_val
sheafPushforwardCocontinuousCompSheafToPresheafIso 📖CompOp
2 mathmath: sheafPushforwardCocontinuousCompSheafToPresheafIso_inv, sheafPushforwardCocontinuousCompSheafToPresheafIso_hom

Theorems

NameKindAssumesProvesValidatesDepends On
cover_lift 📖mathematicalCategoryTheory.Sieve
obj
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.functorPullbackIsCocontinuous.cover_lift
pushforwardContinuousSheafificationCompatibility_hom_app_val 📖mathematicalHasPointwiseRightKanExtension
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Sheaf.Hom.val
obj
CategoryTheory.Functor
category
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
comp
whiskeringLeft
CategoryTheory.presheafToSheaf
sheafPushforwardContinuous
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
pushforwardContinuousSheafificationCompatibility
CategoryTheory.sheafifyLift
CategoryTheory.sheafify
whiskerLeft
CategoryTheory.toSheafify
CategoryTheory.Sheaf.cond
CategoryTheory.sheafifyLift_unique
CategoryTheory.Sheaf.cond
toSheafify_pullbackSheafificationCompatibility
sheafAdjunctionCocontinuous_counit_app_val 📖mathematicalHasPointwiseRightKanExtension
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Sheaf.Hom.val
obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
comp
sheafPushforwardCocontinuous
sheafPushforwardContinuous
id
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
sheafAdjunctionCocontinuous
CategoryTheory.Functor
category
ran
instHasRightKanExtension
whiskeringLeft
ranAdjunction
CategoryTheory.Sheaf.val
instHasRightKanExtension
CategoryTheory.Adjunction.map_restrictFullyFaithful_counit_app
ranAdjunction_counit
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.ext'
sheafAdjunctionCocontinuous_homEquiv_apply_val 📖mathematicalHasPointwiseRightKanExtension
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Sheaf.Hom.val
obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafPushforwardCocontinuous
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
sheafPushforwardContinuous
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
sheafAdjunctionCocontinuous
CategoryTheory.Functor
category
whiskeringLeft
CategoryTheory.Sheaf.val
ran
instHasRightKanExtension
ranAdjunction
instHasRightKanExtension
congr_map
CategoryTheory.Adjunction.restrictFullyFaithful_homEquiv_apply
map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Adjunction.homEquiv_unit
sheafAdjunctionCocontinuous_unit_app_val 📖mathematicalHasPointwiseRightKanExtension
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Sheaf.Hom.val
obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
id
comp
sheafPushforwardContinuous
sheafPushforwardCocontinuous
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
sheafAdjunctionCocontinuous
CategoryTheory.Functor
category
whiskeringLeft
ran
instHasRightKanExtension
ranAdjunction
CategoryTheory.Sheaf.val
instHasRightKanExtension
CategoryTheory.Adjunction.map_restrictFullyFaithful_unit_app
map_id
CategoryTheory.Category.comp_id
sheafPushforwardCocontinuousCompSheafToPresheafIso_hom 📖mathematicalHasPointwiseRightKanExtension
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
category
comp
sheafPushforwardCocontinuous
CategoryTheory.sheafToPresheaf
ran
instHasRightKanExtension
sheafPushforwardCocontinuousCompSheafToPresheafIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
instHasRightKanExtension
sheafPushforwardCocontinuousCompSheafToPresheafIso_inv 📖mathematicalHasPointwiseRightKanExtension
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
category
comp
sheafPushforwardCocontinuous
CategoryTheory.sheafToPresheaf
ran
instHasRightKanExtension
sheafPushforwardCocontinuousCompSheafToPresheafIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
instHasRightKanExtension
toSheafify_pullbackSheafificationCompatibility 📖mathematicalHasPointwiseRightKanExtension
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
CategoryTheory.sheafify
CategoryTheory.Sheaf.val
obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.presheafToSheaf
sheafPushforwardContinuous
CategoryTheory.toSheafify
CategoryTheory.Sheaf.Hom.val
whiskeringLeft
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
pushforwardContinuousSheafificationCompatibility
whiskerLeft
instHasRightKanExtension
Equiv.injective
CategoryTheory.Adjunction.unit_leftAdjointUniq_hom_app
CategoryTheory.Adjunction.homEquiv_unit
map_comp
CategoryTheory.Category.assoc
comp_map
CategoryTheory.Adjunction.comp_unit_app
CategoryTheory.Adjunction.homEquiv_counit
CategoryTheory.Adjunction.unit_naturality
sheafAdjunctionCocontinuous_unit_app_val

CategoryTheory.Functor.IsCocontinuous

Theorems

NameKindAssumesProvesValidatesDepends On
cover_lift 📖mathematicalCategoryTheory.Sieve
CategoryTheory.Functor.obj
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.functorPullback

CategoryTheory.RanIsSheafOfIsCocontinuous

Definitions

NameCategoryTheorems
isLimitMultifork 📖CompOp
liftAux 📖CompOp
3 mathmath: liftAux_map', fac', liftAux_map

Theorems

NameKindAssumesProvesValidatesDepends On
fac 📖mathematicalCategoryTheory.Presheaf.IsSheafCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
lift
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.GrothendieckTopology.Cover.Arrow.f
CategoryTheory.Limits.Multifork.ι
CategoryTheory.Limits.IsLimit.hom_ext
fac'
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
liftAux_map
CategoryTheory.Category.id_comp
fac' 📖mathematicalCategoryTheory.Presheaf.IsSheafCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.op
lift
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
liftAux
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Comma.left
CategoryTheory.Limits.IsLimit.fac
fac_assoc 📖mathematicalCategoryTheory.Presheaf.IsSheafCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
lift
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.GrothendieckTopology.Cover.Arrow.f
CategoryTheory.Limits.Multifork.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
hom_ext 📖CategoryTheory.Presheaf.IsSheaf
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.GrothendieckTopology.Cover.Arrow.f
CategoryTheory.Limits.IsLimit.hom_ext
CategoryTheory.Presheaf.IsSheaf.hom_ext
CategoryTheory.Functor.cover_lift
CategoryTheory.GrothendieckTopology.pullback_stable
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
liftAux_map 📖mathematicalCategoryTheory.Presheaf.IsSheaf
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
CategoryTheory.GrothendieckTopology.Cover.Arrow.f
CategoryTheory.Functor.map
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
Opposite
CategoryTheory.Category.opposite
Opposite.op
liftAux
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.MulticospanIndex.left
CategoryTheory.Limits.Multifork.ι
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Functor.cover_lift
CategoryTheory.GrothendieckTopology.pullback_stable
CategoryTheory.Sieve.downward_closed
CategoryTheory.GrothendieckTopology.Cover.Arrow.hf
CategoryTheory.Limits.Multifork.IsLimit.fac
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Limits.Multifork.condition
liftAux_map' 📖mathematicalCategoryTheory.Presheaf.IsSheaf
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
Opposite
CategoryTheory.Category.opposite
Opposite.op
liftAux
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Presheaf.IsSheaf.hom_ext
CategoryTheory.Functor.cover_lift
CategoryTheory.GrothendieckTopology.pullback_stable
liftAux_map
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_id

---

← Back to Index