Documentation Verification Report

Coverage

๐Ÿ“ Source: Mathlib/CategoryTheory/Sites/Coverage.lean

Statistics

MetricCount
DefinitionsCoverage, Saturate, covering, gi, instCoeFunForallSetPresieve, instPartialOrder, instSemilatticeSup, ofGrothendieck, toGrothendieck, toPrecoverage, toCoverage, toPrecoverage, toCoverage, FactorsThru, FactorsThruAlong, toCoverage
16
Theoremspullback, eq_top_pullback, ext, ext_iff, mem_toGrothendieck, mem_toGrothendieck_sieves_of_superset, pullback, saturate_iff_saturate_toPrecoverage, saturate_of_superset, sup_covering, toGrothendieck_eq_sInf, toGrothendieck_toPrecoverage, instHasIsosToPrecoverage, instIsStableUnderBaseChangeToPrecoverage, instIsStableUnderCompositionToPrecoverage, mem_toCoverage_iff, mem_toPrecoverage_iff, isSheaf_toGrothendieck_iff_of_isStableUnderBaseChange, isSheaf_toGrothendieck_iff_of_isStableUnderBaseChange_of_small, toCoverage_toPrecoverage, toGrothendieck_le_iff_le_toPrecoverage, toGrothendieck_toCoverage, isSheaf_iff_isLimit_coverage, isSheaf_sup, pullbackArrows, factorsThruAlong_id, factorsThru_of_le, factorsThru_top, isSheafFor_of_factorsThru, isSheaf_coverage, isSheaf_sup, le_of_factorsThru_sieve, mem_toCoverage, toGrothendieck_toCoverage, ofGrothendieck_iff
35
Total51

CategoryTheory

Definitions

NameCategoryTheorems
Coverage ๐Ÿ“–CompData
5 mathmath: extensive_regular_generate_coherent, Coverage.toGrothendieck_eq_sInf, Coverage.sup_covering, Presheaf.isSheaf_sup, Presieve.isSheaf_sup

Theorems

NameKindAssumesProvesValidatesDepends On
ofGrothendieck_iff ๐Ÿ“–mathematicalโ€”Presieve
Set
Set.instMembership
Precoverage.coverings
Coverage.toPrecoverage
GrothendieckTopology.toCoverage
Sieve
DFunLike.coe
GrothendieckTopology
GrothendieckTopology.instDFunLikeSetSieve
Sieve.generate
โ€”GrothendieckTopology.mem_toCoverage_iff

CategoryTheory.Coverage

Definitions

NameCategoryTheorems
Saturate ๐Ÿ“–CompData
2 mathmath: saturate_iff_saturate_toPrecoverage, mem_toGrothendieck
covering ๐Ÿ“–CompOpโ€”
gi ๐Ÿ“–CompOpโ€”
instCoeFunForallSetPresieve ๐Ÿ“–CompOpโ€”
instPartialOrder ๐Ÿ“–CompOp
1 mathmath: toGrothendieck_eq_sInf
instSemilatticeSup ๐Ÿ“–CompOp
4 mathmath: CategoryTheory.extensive_regular_generate_coherent, sup_covering, CategoryTheory.Presheaf.isSheaf_sup, CategoryTheory.Presieve.isSheaf_sup
ofGrothendieck ๐Ÿ“–CompOpโ€”
toGrothendieck ๐Ÿ“–CompOp
11 mathmath: CategoryTheory.extensive_regular_generate_coherent, CategoryTheory.Presheaf.isSheaf_iff_isLimit_coverage, toGrothendieck_toPrecoverage, toGrothendieck_eq_sInf, mem_toGrothendieck_sieves_of_superset, CategoryTheory.Pretopology.toGrothendieck_toCoverage, mem_toGrothendieck, CategoryTheory.Presieve.isSheaf_coverage, CategoryTheory.Precoverage.toGrothendieck_toCoverage, CategoryTheory.Presheaf.isSheaf_sup, CategoryTheory.Presieve.isSheaf_sup
toPrecoverage ๐Ÿ“–CompOp
9 mathmath: ext_iff, toGrothendieck_toPrecoverage, saturate_iff_saturate_toPrecoverage, CategoryTheory.MorphismProperty.coverage_toPrecoverage, CategoryTheory.ofGrothendieck_iff, CategoryTheory.Precoverage.toCoverage_toPrecoverage, CategoryTheory.Pretopology.mem_toCoverage, sup_covering, CategoryTheory.GrothendieckTopology.mem_toCoverage_iff

Theorems

NameKindAssumesProvesValidatesDepends On
eq_top_pullback ๐Ÿ“–mathematicalCategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Sieve.instCompleteLattice
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.pullback
Top.top
OrderTop.toTop
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
โ€”CategoryTheory.Sieve.ext
CategoryTheory.Sieve.downward_closed
ext ๐Ÿ“–โ€”CategoryTheory.Precoverage.coverings
toPrecoverage
โ€”โ€”โ€”
ext_iff ๐Ÿ“–mathematicalโ€”CategoryTheory.Precoverage.coverings
toPrecoverage
โ€”ext
mem_toGrothendieck ๐Ÿ“–mathematicalโ€”CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
toGrothendieck
Saturate
โ€”โ€”
mem_toGrothendieck_sieves_of_superset ๐Ÿ“–mathematicalCategoryTheory.Presieve
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticePresieve
CategoryTheory.Sieve.arrows
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
toPrecoverage
CategoryTheory.Sieve
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
toGrothendieck
โ€”saturate_of_superset
CategoryTheory.Sieve.generate_le_iff
pullback ๐Ÿ“–mathematicalCategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
toPrecoverage
CategoryTheory.Presieve.FactorsThruAlongโ€”โ€”
saturate_iff_saturate_toPrecoverage ๐Ÿ“–mathematicalโ€”Saturate
CategoryTheory.Precoverage.Saturate
toPrecoverage
โ€”โ€”
saturate_of_superset ๐Ÿ“–โ€”CategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Sieve.instCompleteLattice
Saturate
โ€”โ€”eq_top_pullback
sup_covering ๐Ÿ“–mathematicalโ€”CategoryTheory.Precoverage.coverings
toPrecoverage
CategoryTheory.Coverage
SemilatticeSup.toMax
instSemilatticeSup
Set
CategoryTheory.Presieve
Set.instUnion
โ€”โ€”
toGrothendieck_eq_sInf ๐Ÿ“–mathematicalโ€”toGrothendieck
InfSet.sInf
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instInfSet
setOf
CategoryTheory.Coverage
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
CategoryTheory.GrothendieckTopology.toCoverage
โ€”le_antisymm
le_sInf
CategoryTheory.GrothendieckTopology.top_mem
CategoryTheory.GrothendieckTopology.transitive
sInf_le
toGrothendieck_toPrecoverage ๐Ÿ“–mathematicalโ€”CategoryTheory.Precoverage.toGrothendieck
toPrecoverage
toGrothendieck
โ€”toGrothendieck.eq_1
CategoryTheory.GrothendieckTopology.copy_eq

CategoryTheory.Coverage.Saturate

Theorems

NameKindAssumesProvesValidatesDepends On
pullback ๐Ÿ“–mathematicalCategoryTheory.Coverage.SaturateCategoryTheory.Sieve.pullbackโ€”CategoryTheory.Coverage.pullback
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Coverage.saturate_of_superset
CategoryTheory.Sieve.pullback_comp

CategoryTheory.GrothendieckTopology

Definitions

NameCategoryTheorems
toCoverage ๐Ÿ“–CompOp
3 mathmath: CategoryTheory.Coverage.toGrothendieck_eq_sInf, CategoryTheory.ofGrothendieck_iff, mem_toCoverage_iff
toPrecoverage ๐Ÿ“–CompOp
6 mathmath: CategoryTheory.Precoverage.toGrothendieck_le_iff_le_toPrecoverage, instIsStableUnderBaseChangeToPrecoverage, instHasIsosToPrecoverage, instIsStableUnderCompositionToPrecoverage, mem_toPrecoverage_iff, OneHypercover.toZeroHypercover_toPreZeroHypercover

Theorems

NameKindAssumesProvesValidatesDepends On
instHasIsosToPrecoverage ๐Ÿ“–mathematicalโ€”CategoryTheory.Precoverage.HasIsos
toPrecoverage
โ€”CategoryTheory.Sieve.generate_of_singleton_isSplitEpi
CategoryTheory.IsSplitEpi.of_iso
instIsStableUnderBaseChangeToPrecoverage ๐Ÿ“–mathematicalโ€”CategoryTheory.Precoverage.IsStableUnderBaseChange
toPrecoverage
โ€”mem_toPrecoverage_iff
CategoryTheory.Sieve.ofArrows.eq_1
CategoryTheory.Sieve.ofArrows_eq_pullback_of_isPullback
pullback_stable
instIsStableUnderCompositionToPrecoverage ๐Ÿ“–mathematicalโ€”CategoryTheory.Precoverage.IsStableUnderComposition
toPrecoverage
โ€”mem_toPrecoverage_iff
CategoryTheory.Presieve.bindOfArrows_ofArrows
bindOfArrows
mem_toCoverage_iff ๐Ÿ“–mathematicalโ€”CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.Coverage.toPrecoverage
toCoverage
CategoryTheory.Sieve
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
CategoryTheory.Sieve.generate
โ€”โ€”
mem_toPrecoverage_iff ๐Ÿ“–mathematicalโ€”CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
toPrecoverage
CategoryTheory.Sieve
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
CategoryTheory.Sieve.generate
โ€”โ€”

CategoryTheory.Precoverage

Definitions

NameCategoryTheorems
toCoverage ๐Ÿ“–CompOp
2 mathmath: toGrothendieck_toCoverage, toCoverage_toPrecoverage

Theorems

NameKindAssumesProvesValidatesDepends On
isSheaf_toGrothendieck_iff_of_isStableUnderBaseChange ๐Ÿ“–mathematicalโ€”CategoryTheory.Presieve.IsSheaf
toGrothendieck
CategoryTheory.Presieve.IsSheafFor
โ€”toCoverage_toPrecoverage
CategoryTheory.Coverage.toGrothendieck_toPrecoverage
CategoryTheory.Presieve.isSheaf_coverage
isSheaf_toGrothendieck_iff_of_isStableUnderBaseChange_of_small ๐Ÿ“–mathematicalโ€”CategoryTheory.Presieve.IsSheaf
toGrothendieck
CategoryTheory.Presieve.IsSheafFor
CategoryTheory.PreZeroHypercover.presieveโ‚€
ZeroHypercover.toPreZeroHypercover
โ€”isSheaf_toGrothendieck_iff_of_isStableUnderBaseChange
ZeroHypercover.memโ‚€
CategoryTheory.Presieve.exists_eq_preZeroHypercover
CategoryTheory.Presieve.isSheafFor_iff_generate
CategoryTheory.Presieve.isSheafFor_subsieve
instSmallOfSmall
CategoryTheory.Sieve.generate_mono
ZeroHypercover.instHasPullbacksPresieveโ‚€OfHasPullbacks
CategoryTheory.Sieve.pullbackArrows_comm
ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveโ‚€
CategoryTheory.Presieve.instHasPullbacksOfArrowsOfHasPullback
CategoryTheory.PreZeroHypercover.presieveโ‚€_pullbackโ‚
ZeroHypercover.pullbackโ‚‚_toPreZeroHypercover
toCoverage_toPrecoverage ๐Ÿ“–mathematicalโ€”CategoryTheory.Coverage.toPrecoverage
toCoverage
โ€”โ€”
toGrothendieck_le_iff_le_toPrecoverage ๐Ÿ“–mathematicalโ€”CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instLEGrothendieckTopology
toGrothendieck
CategoryTheory.Precoverage
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
CategoryTheory.GrothendieckTopology.toPrecoverage
โ€”toGrothendieck_toCoverage
GaloisInsertion.gc
toGrothendieck_toCoverage ๐Ÿ“–mathematicalโ€”CategoryTheory.Coverage.toGrothendieck
toCoverage
toGrothendieck
โ€”le_antisymm
generate_mem_toGrothendieck
CategoryTheory.GrothendieckTopology.top_mem
CategoryTheory.GrothendieckTopology.transitive
CategoryTheory.GrothendieckTopology.pullback_stable

CategoryTheory.Presheaf

Theorems

NameKindAssumesProvesValidatesDepends On
isSheaf_iff_isLimit_coverage ๐Ÿ“–mathematicalโ€”IsSheaf
CategoryTheory.Coverage.toGrothendieck
CategoryTheory.Limits.IsLimit
Opposite
CategoryTheory.Presieve.category
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.generate
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Presieve.diagram
CategoryTheory.Functor.mapCone
CategoryTheory.Limits.Cocone.op
CategoryTheory.Presieve.cocone
โ€”โ€”
isSheaf_sup ๐Ÿ“–mathematicalโ€”IsSheaf
CategoryTheory.Coverage.toGrothendieck
CategoryTheory.Coverage
SemilatticeSup.toMax
CategoryTheory.Coverage.instSemilatticeSup
โ€”CategoryTheory.Presieve.isSheaf_sup

CategoryTheory.Presieve

Definitions

NameCategoryTheorems
FactorsThru ๐Ÿ“–MathDef
3 mathmath: factorsThruAlong_id, factorsThru_of_le, factorsThru_top
FactorsThruAlong ๐Ÿ“–MathDef
3 mathmath: CategoryTheory.Coverage.pullback, factorsThruAlong_id, FactorsThruAlong.pullbackArrows

Theorems

NameKindAssumesProvesValidatesDepends On
factorsThruAlong_id ๐Ÿ“–mathematicalโ€”FactorsThruAlong
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
FactorsThru
โ€”CategoryTheory.Category.comp_id
factorsThru_of_le ๐Ÿ“–mathematicalCategoryTheory.Presieve
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticePresieve
FactorsThruโ€”CategoryTheory.Category.id_comp
factorsThru_top ๐Ÿ“–mathematicalโ€”FactorsThru
Top.top
CategoryTheory.Presieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticePresieve
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
โ€”factorsThru_of_le
le_top
isSheafFor_of_factorsThru ๐Ÿ“–โ€”FactorsThru
IsSheafFor
IsSeparatedFor
FactorsThruAlong
โ€”โ€”IsSeparatedFor.ext
CategoryTheory.Functor.map_comp
CategoryTheory.types_comp_apply
CategoryTheory.op_comp
CategoryTheory.Category.assoc
isSheaf_coverage ๐Ÿ“–mathematicalโ€”IsSheaf
CategoryTheory.Coverage.toGrothendieck
IsSheafFor
โ€”CategoryTheory.Coverage.toGrothendieck_toPrecoverage
CategoryTheory.Precoverage.isSheaf_toGrothendieck_iff
CategoryTheory.Sieve.pullback_id
CategoryTheory.Coverage.pullback
isSheafFor_of_factorsThru
CategoryTheory.Category.id_comp
IsSheafFor.isSeparatedFor
isSheaf_sup ๐Ÿ“–mathematicalโ€”IsSheaf
CategoryTheory.Coverage.toGrothendieck
CategoryTheory.Coverage
SemilatticeSup.toMax
CategoryTheory.Coverage.instSemilatticeSup
โ€”isSheaf_of_le
GaloisConnection.monotone_l
GaloisInsertion.gc
le_sup_left
le_sup_right
isSheaf_coverage
le_of_factorsThru_sieve ๐Ÿ“–mathematicalFactorsThru
CategoryTheory.Sieve.arrows
CategoryTheory.Presieve
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticePresieve
โ€”CategoryTheory.Sieve.downward_closed

CategoryTheory.Presieve.FactorsThruAlong

Theorems

NameKindAssumesProvesValidatesDepends On
pullbackArrows ๐Ÿ“–mathematicalโ€”CategoryTheory.Presieve.FactorsThruAlong
CategoryTheory.Presieve.pullbackArrows
โ€”CategoryTheory.Presieve.hasPullback
CategoryTheory.Limits.pullback.condition

CategoryTheory.Pretopology

Definitions

NameCategoryTheorems
toCoverage ๐Ÿ“–CompOp
3 mathmath: CategoryTheory.MorphismProperty.coverage_eq_toCoverage_pretopology, toGrothendieck_toCoverage, mem_toCoverage

Theorems

NameKindAssumesProvesValidatesDepends On
mem_toCoverage ๐Ÿ“–mathematicalโ€”CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.Coverage.toPrecoverage
toCoverage
toPrecoverage
โ€”โ€”
toGrothendieck_toCoverage ๐Ÿ“–mathematicalโ€”CategoryTheory.Coverage.toGrothendieck
toCoverage
toGrothendieck
โ€”CategoryTheory.GrothendieckTopology.ext
Set.ext
mem_toGrothendieck
CategoryTheory.Coverage.mem_toGrothendieck
CategoryTheory.Sieve.le_generate
has_isos
CategoryTheory.IsIso.id
le_top
transitive
CategoryTheory.Coverage.saturate_of_superset
CategoryTheory.Sieve.generate_le_iff

---

โ† Back to Index