Documentation Verification Report

CoversTop

📁 Source: Mathlib/CategoryTheory/Sites/CoversTop.lean

Statistics

MetricCount
DefinitionsCoversTop, cover, FamilyOfElementsOnObjects, IsCompatible, section_, familyOfElements
6
Theoremsext, sections_ext, coversTop_iff_of_isTerminal, existsUnique_section, familyOfElements_apply, familyOfElements_isCompatible, section_apply
7
Total13

CategoryTheory.GrothendieckTopology

Definitions

NameCategoryTheorems
CoversTop 📖MathDef
3 mathmath: SheafOfModules.QuasicoherentData.coversTop, coversTop_iff_of_isTerminal, SheafOfModules.LocalGeneratorsData.coversTop

Theorems

NameKindAssumesProvesValidatesDepends On
coversTop_iff_of_isTerminal 📖mathematicalCoversTop
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
CategoryTheory.Sieve.ofObjects
superset_covering
pullback_stable

CategoryTheory.GrothendieckTopology.CoversTop

Definitions

NameCategoryTheorems
cover 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖CategoryTheory.GrothendieckTopology.CoversTop
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
CategoryTheory.Functor.obj
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.IsLimit.hom_ext
CategoryTheory.Presheaf.IsSheaf.hom_ext
CategoryTheory.Sheaf.cond
CategoryTheory.Category.assoc
CategoryTheory.Limits.Cone.w
CategoryTheory.eq_whisker
sections_ext 📖CategoryTheory.GrothendieckTopology.CoversTop
Set
Set.instMembership
CategoryTheory.Functor.sections
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
CategoryTheory.types
Opposite.op
CategoryTheory.Presieve.IsSeparatedFor.ext
CategoryTheory.Presieve.IsSheaf.isSeparated
CategoryTheory.isSheaf_iff_isSheaf_of_type
CategoryTheory.Sheaf.cond
CategoryTheory.Functor.sections_property

CategoryTheory.Presheaf

Definitions

NameCategoryTheorems
FamilyOfElementsOnObjects 📖CompOp

CategoryTheory.Presheaf.FamilyOfElementsOnObjects

Definitions

NameCategoryTheorems
IsCompatible 📖MathDef
familyOfElements 📖CompOp
2 mathmath: IsCompatible.familyOfElements_apply, IsCompatible.familyOfElements_isCompatible

CategoryTheory.Presheaf.FamilyOfElementsOnObjects.IsCompatible

Definitions

NameCategoryTheorems
section_ 📖CompOp
1 mathmath: section_apply

Theorems

NameKindAssumesProvesValidatesDepends On
existsUnique_section 📖mathematicalCategoryTheory.Presheaf.FamilyOfElementsOnObjects.IsCompatible
CategoryTheory.GrothendieckTopology.CoversTop
CategoryTheory.Presheaf.IsSheaf
CategoryTheory.types
ExistsUnique
Set.Elem
CategoryTheory.Functor.sections
Opposite
CategoryTheory.Category.opposite
CategoryTheory.isSheaf_iff_isSheaf_of_type
existsUnique_of_exists_of_unique
familyOfElements_isCompatible
CategoryTheory.Presieve.IsSheafFor.valid_glue
CategoryTheory.Functor.map_id
familyOfElements_apply
CategoryTheory.Presieve.IsSeparatedFor.ext
CategoryTheory.Presieve.IsSheaf.isSeparated
CategoryTheory.op_comp
CategoryTheory.Functor.map_comp
CategoryTheory.FunctorToTypes.map_id_apply
CategoryTheory.GrothendieckTopology.CoversTop.sections_ext
familyOfElements_apply 📖mathematicalCategoryTheory.Presheaf.FamilyOfElementsOnObjects.IsCompatibleCategoryTheory.Presheaf.FamilyOfElementsOnObjects.familyOfElements
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Quiver.Hom.op
familyOfElements_isCompatible 📖mathematicalCategoryTheory.Presheaf.FamilyOfElementsOnObjects.IsCompatibleCategoryTheory.Presieve.FamilyOfElements.Compatible
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.ofObjects
CategoryTheory.Presheaf.FamilyOfElementsOnObjects.familyOfElements
familyOfElements_apply
CategoryTheory.FunctorToTypes.map_comp_apply
section_apply 📖mathematicalCategoryTheory.Presheaf.FamilyOfElementsOnObjects.IsCompatible
CategoryTheory.GrothendieckTopology.CoversTop
CategoryTheory.Presheaf.IsSheaf
CategoryTheory.types
Set
Set.instMembership
CategoryTheory.Functor.sections
Opposite
CategoryTheory.Category.opposite
section_
Opposite.op
existsUnique_section

---

← Back to Index