Documentation Verification Report

Basic

πŸ“ Source: Mathlib/CategoryTheory/Sites/DenseSubsite/Basic.lean

Statistics

MetricCount
DefinitionsIsCoverDense, appHom, appIso, presheafHom, presheafIso, pushforwardFamily, sheafIso, homOver, isoOver, presheafIso, restrictHomEquivHom, sheafCoyonedaHom, sheafHom, sheafIso, sheafYonedaHom, IsDenseSubsite, mapPreimage, CoverByImageStructure, map, obj, coverByImage, coverByImage
22
TheoremsappHom_restrict, appHom_valid_glue, appIso_hom, appIso_inv, naturality, naturality_apply, naturality_assoc, presheafHom_app, presheafIso_hom_app, presheafIso_inv_app, pushforwardFamily_apply, pushforwardFamily_compatible, pushforwardFamily_def, sheafIso_hom_val, sheafIso_inv_val, compatiblePreserving, ext, faithful_sheafPushforwardContinuous, full_sheafPushforwardContinuous, functorPullback_pushforward_covering, homOver_app, isContinuous, is_cover, isoOver_hom_app, isoOver_inv_app, iso_of_restrict_iso, presheafIso_hom_app, presheafIso_inv, restrictHomEquivHom_naturality_left, restrictHomEquivHom_naturality_left_assoc, restrictHomEquivHom_naturality_left_symm, restrictHomEquivHom_naturality_left_symm_assoc, restrictHomEquivHom_naturality_right, restrictHomEquivHom_naturality_right_assoc, restrictHomEquivHom_naturality_right_symm, restrictHomEquivHom_naturality_right_symm_assoc, sheafCoyonedaHom_app, sheafHom_eq, sheafHom_restrict_eq, sheafIso_hom_val, sheafIso_inv_val, sheaf_eq_amalgamation, coverPreserving, equalizer_mem, faithful_sheafPushforwardContinuous, full_sheafPushforwardContinuous, functorPushforward_mem_iff, imageSieve_mem, instIsCocontinuous, instIsContinuous, isCoverDense, isCoverDense', isLocallyFaithful, isLocallyFaithful', isLocallyFull, isLocallyFull', mapPreimage_comp, mapPreimage_comp_assoc, mapPreimage_comp_map, mapPreimage_comp_map_assoc, mapPreimage_id, mapPreimage_map, mapPreimage_map_of_fac, mapPreimage_of_eq, map_eq_of_eq, functorPushforward_mem_iff, isCoverDense_of_generate_singleton_functor_Ο€_mem, is_cover_of_isCoverDense, whiskerLeft_obj_map_bijective_of_isCoverDense, fac, fac_assoc, in_coverByImage
72
Total94

CategoryTheory.Functor

Definitions

NameCategoryTheorems
IsCoverDense πŸ“–CompData
9 mathmath: CategoryTheory.regularTopology.instIsCoverDense, isCoverDense_of_generate_singleton_functor_Ο€_mem, TopCat.Opens.coverDense_inducedFunctor, TopCat.Opens.coverDense_iff_isBasis, IsDenseSubsite.isCoverDense', CategoryTheory.coherentTopology.instIsCoverDense, IsDenseSubsite.isCoverDense, CategoryTheory.Equivalence.instIsCoverDenseOfIsEquivalence, AlgebraicGeometry.Scheme.AffineZariskiSite.instIsCoverDenseOpensToOpensFunctorGrothendieckTopologyCarrierCarrierCommRingCat
IsDenseSubsite πŸ“–CompData
12 mathmath: CategoryTheory.Equivalence.isDenseSubsite_inverse_of_isCocontinuous, CategoryTheory.Equivalence.isDenseSubsite_functor_of_isCocontinuous, CategoryTheory.coherentTopology.instIsDenseSubsite, CategoryTheory.Equivalence.instIsDenseSubsiteInducedTopologyInverseFunctor, instIsDenseSubsiteInducedTopologyOfIsCoverDense, CategoryTheory.Equivalence.instIsDenseSubsiteRegularTopologyInverse, AlgebraicGeometry.Scheme.AffineZariskiSite.instIsDenseSubsiteOpensCarrierCarrierCommRingCatGrothendieckTopologyGrothendieckTopologyToOpensFunctor, CategoryTheory.regularTopology.instIsDenseSubsite, CategoryTheory.instIsDenseSubsiteOverLeftDiscretePUnitOverInverseIteratedSliceEquiv, CategoryTheory.Equivalence.instIsDenseSubsiteFunctor, CategoryTheory.Equivalence.instIsDenseSubsiteCoherentTopologyInverse, isDenseSubsite_of_isOneHypercoverDense

Theorems

NameKindAssumesProvesValidatesDepends On
functorPushforward_mem_iff πŸ“–mathematicalβ€”CategoryTheory.Sieve
obj
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.functorPushforward
β€”IsDenseSubsite.functorPushforward_mem_iff
isCoverDense_of_generate_singleton_functor_Ο€_mem πŸ“–mathematicalCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.generate
CategoryTheory.Presieve.singleton
obj
IsCoverDenseβ€”CategoryTheory.GrothendieckTopology.superset_covering
is_cover_of_isCoverDense πŸ“–mathematicalβ€”CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.coverByImage
β€”IsCoverDense.is_cover
whiskerLeft_obj_map_bijective_of_isCoverDense πŸ“–mathematicalCategoryTheory.Presheaf.IsSheafFunction.Bijective
Quiver.Hom
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
category
obj
whiskeringLeft
op
map
β€”Equiv.bijective

CategoryTheory.Functor.IsCoverDense

Definitions

NameCategoryTheorems
homOver πŸ“–CompOp
2 mathmath: sheafCoyonedaHom_app, homOver_app
isoOver πŸ“–CompOp
2 mathmath: isoOver_hom_app, isoOver_inv_app
presheafIso πŸ“–CompOp
4 mathmath: presheafIso_hom_app, presheafIso_inv, sheafIso_inv_val, sheafIso_hom_val
restrictHomEquivHom πŸ“–CompOp
8 mathmath: restrictHomEquivHom_naturality_left_symm_assoc, restrictHomEquivHom_naturality_right_symm, restrictHomEquivHom_naturality_left, restrictHomEquivHom_naturality_left_assoc, restrictHomEquivHom_naturality_right_assoc, restrictHomEquivHom_naturality_right_symm_assoc, restrictHomEquivHom_naturality_right, restrictHomEquivHom_naturality_left_symm
sheafCoyonedaHom πŸ“–CompOp
1 mathmath: sheafCoyonedaHom_app
sheafHom πŸ“–CompOp
3 mathmath: sheafHom_eq, sheafHom_restrict_eq, presheafIso_inv
sheafIso πŸ“–CompOp
2 mathmath: sheafIso_inv_val, sheafIso_hom_val
sheafYonedaHom πŸ“–CompOp
2 mathmath: presheafIso_hom_app, AlgebraicGeometry.LocallyRingedSpace.toΞ“SpecSheafedSpace_hom_c_app

Theorems

NameKindAssumesProvesValidatesDepends On
compatiblePreserving πŸ“–mathematicalβ€”CategoryTheory.CompatiblePreservingβ€”ext
CategoryTheory.Functor.IsLocallyFull.ext
CategoryTheory.Functor.IsLocallyFaithful.ext
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
ext πŸ“–β€”CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
Opposite.op
CategoryTheory.Functor.obj
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”CategoryTheory.Presieve.IsSeparatedFor.ext
CategoryTheory.Presieve.IsSheafFor.isSeparatedFor
CategoryTheory.isSheaf_iff_isSheaf_of_type
CategoryTheory.Sheaf.cond
CategoryTheory.Functor.is_cover_of_isCoverDense
CategoryTheory.FunctorToTypes.map_comp_apply
faithful_sheafPushforwardContinuous πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.sheafPushforwardContinuous
β€”CategoryTheory.Sheaf.hom_ext
sheafHom_eq
full_sheafPushforwardContinuous πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.sheafPushforwardContinuous
β€”CategoryTheory.Sheaf.Hom.ext
sheafHom_restrict_eq
functorPullback_pushforward_covering πŸ“–mathematicalβ€”CategoryTheory.Sieve
CategoryTheory.Functor.obj
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.functorPushforward
CategoryTheory.Sieve.functorPullback
β€”CategoryTheory.GrothendieckTopology.transitive
CategoryTheory.Functor.is_cover_of_isCoverDense
CategoryTheory.Sieve.pullback_comp
CategoryTheory.GrothendieckTopology.pullback_stable
CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.Category.assoc
CategoryTheory.Sieve.downward_closed
CategoryTheory.Functor.functorPushforward_imageSieve_mem
homOver_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
CategoryTheory.Sheaf.val
CategoryTheory.sheafOver
homOver
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
β€”β€”
isContinuous πŸ“–mathematicalCategoryTheory.CoverPreservingCategoryTheory.Functor.IsContinuousβ€”CategoryTheory.Functor.isContinuous_of_coverPreserving
compatiblePreserving
is_cover πŸ“–mathematicalβ€”CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.coverByImage
β€”β€”
isoOver_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringRight
CategoryTheory.coyoneda
Opposite.op
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Sheaf.val
CategoryTheory.Iso.hom
CategoryTheory.sheafOver
isoOver
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
β€”β€”
isoOver_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringRight
CategoryTheory.coyoneda
Opposite.op
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Sheaf.val
CategoryTheory.Iso.inv
CategoryTheory.sheafOver
isoOver
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
β€”β€”
iso_of_restrict_iso πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
β€”CategoryTheory.Sheaf.hom_ext
sheafHom_eq
CategoryTheory.Iso.isIso_hom
presheafIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
presheafIso
CategoryTheory.Functor.preimage
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.yoneda
CategoryTheory.Yoneda.yoneda_full
CategoryTheory.Functor.comp
sheafYonedaHom
CategoryTheory.Functor.op
β€”β€”
presheafIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Sheaf.val
presheafIso
CategoryTheory.inv
sheafHom
CategoryTheory.Iso.hom
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
β€”β€”
restrictHomEquivHom_naturality_left πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Sheaf.val
EquivLike.toFunLike
Equiv.instEquivLike
restrictHomEquivHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.whiskerLeft
β€”Equiv.injective
Equiv.symm_apply_apply
restrictHomEquivHom_naturality_left_symm
restrictHomEquivHom_naturality_left_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Sheaf.val
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
EquivLike.toFunLike
Equiv.instEquivLike
restrictHomEquivHom
CategoryTheory.Functor.whiskerLeft
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restrictHomEquivHom_naturality_left
restrictHomEquivHom_naturality_left_symm πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Sheaf.val
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
restrictHomEquivHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.whiskerLeft
β€”β€”
restrictHomEquivHom_naturality_left_symm_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Sheaf.val
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
restrictHomEquivHom
CategoryTheory.Functor.whiskerLeft
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restrictHomEquivHom_naturality_left_symm
restrictHomEquivHom_naturality_right πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Sheaf.val
EquivLike.toFunLike
Equiv.instEquivLike
restrictHomEquivHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Sheaf.Hom.val
β€”Equiv.injective
Equiv.symm_apply_apply
restrictHomEquivHom_naturality_right_symm
restrictHomEquivHom_naturality_right_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Sheaf.val
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
EquivLike.toFunLike
Equiv.instEquivLike
restrictHomEquivHom
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Sheaf.Hom.val
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restrictHomEquivHom_naturality_right
restrictHomEquivHom_naturality_right_symm πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Sheaf.val
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
restrictHomEquivHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Functor.whiskerLeft
β€”β€”
restrictHomEquivHom_naturality_right_symm_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Sheaf.val
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
restrictHomEquivHom
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Functor.whiskerLeft
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restrictHomEquivHom_naturality_right_symm
sheafCoyonedaHom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.coyoneda
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Sheaf.val
sheafCoyonedaHom
Types.presheafHom
Opposite.op
Opposite.unop
CategoryTheory.sheafOver
homOver
β€”β€”
sheafHom_eq πŸ“–mathematicalβ€”sheafHom
CategoryTheory.Functor.whiskerLeft
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Sheaf.val
β€”CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.map_injective
CategoryTheory.Yoneda.yoneda_faithful
CategoryTheory.types_ext
CategoryTheory.Yoneda.yoneda_full
CategoryTheory.Functor.map_preimage
sheaf_eq_amalgamation
CategoryTheory.Functor.is_cover_of_isCoverDense
Types.pushforwardFamily_compatible
CategoryTheory.Presieve.CoverByImageStructure.fac
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.naturality
sheafHom_restrict_eq πŸ“–mathematicalβ€”CategoryTheory.Functor.whiskerLeft
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Sheaf.val
sheafHom
β€”CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.map_injective
CategoryTheory.Yoneda.yoneda_faithful
CategoryTheory.types_ext
CategoryTheory.Yoneda.yoneda_full
CategoryTheory.Functor.map_preimage
sheaf_eq_amalgamation
CategoryTheory.Functor.is_cover_of_isCoverDense
Types.pushforwardFamily_compatible
CategoryTheory.Presieve.CoverByImageStructure.fac
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.Category.assoc
CategoryTheory.Presheaf.isSheaf_comp_of_isSheaf
CategoryTheory.coyoneda_preservesLimits
CategoryTheory.Sheaf.cond
Types.naturality_apply
CategoryTheory.Category.id_comp
sheafIso_hom_val πŸ“–mathematicalβ€”CategoryTheory.Sheaf.Hom.val
CategoryTheory.Iso.hom
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafIso
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Sheaf.val
presheafIso
β€”β€”
sheafIso_inv_val πŸ“–mathematicalβ€”CategoryTheory.Sheaf.Hom.val
CategoryTheory.Iso.inv
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafIso
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Sheaf.val
presheafIso
β€”β€”
sheaf_eq_amalgamation πŸ“–mathematicalCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Presieve.FamilyOfElements.Compatible
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
CategoryTheory.Sieve.arrows
CategoryTheory.Presieve.FamilyOfElements.IsAmalgamation
CategoryTheory.Presieve.IsSheafFor.amalgamate
CategoryTheory.Sheaf.cond
β€”CategoryTheory.Presieve.IsSheafFor.isSeparatedFor
CategoryTheory.Sheaf.cond
CategoryTheory.Presieve.IsSheafFor.isAmalgamation

CategoryTheory.Functor.IsCoverDense.Types

Definitions

NameCategoryTheorems
appHom πŸ“–CompOp
7 mathmath: appHom_valid_glue, appHom_restrict, appIso_inv, presheafIso_inv_app, presheafIso_hom_app, presheafHom_app, appIso_hom
appIso πŸ“–CompOp
2 mathmath: appIso_inv, appIso_hom
presheafHom πŸ“–CompOp
2 mathmath: CategoryTheory.Functor.IsCoverDense.sheafCoyonedaHom_app, presheafHom_app
presheafIso πŸ“–CompOp
4 mathmath: sheafIso_hom_val, presheafIso_inv_app, sheafIso_inv_val, presheafIso_hom_app
pushforwardFamily πŸ“–CompOp
3 mathmath: pushforwardFamily_def, pushforwardFamily_compatible, pushforwardFamily_apply
sheafIso πŸ“–CompOp
2 mathmath: sheafIso_hom_val, sheafIso_inv_val

Theorems

NameKindAssumesProvesValidatesDepends On
appHom_restrict πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
Opposite.op
CategoryTheory.Functor.obj
appHom
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
β€”CategoryTheory.isSheaf_iff_isSheaf_of_type
CategoryTheory.Sheaf.cond
CategoryTheory.Functor.is_cover_of_isCoverDense
pushforwardFamily_compatible
CategoryTheory.Presieve.in_coverByImage
CategoryTheory.Presieve.IsSheafFor.valid_glue
pushforwardFamily_apply
appHom_valid_glue πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Sheaf.val
appHom
CategoryTheory.Functor.map
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.NatTrans.app
β€”CategoryTheory.types_ext
appHom_restrict
appIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
appIso
appHom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
β€”β€”
appIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
appIso
appHom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
β€”β€”
naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
Opposite.op
CategoryTheory.Sheaf.val
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
β€”CategoryTheory.types_ext
naturality_apply
naturality_apply πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
Opposite.op
CategoryTheory.Functor.obj
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
β€”CategoryTheory.NatTrans.naturality
CategoryTheory.Functor.IsLocallyFull.ext
naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
Opposite.op
CategoryTheory.Sheaf.val
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
naturality
presheafHom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
presheafHom
appHom
Opposite.unop
β€”β€”
presheafIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
presheafIso
appHom
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
Opposite.unop
β€”β€”
presheafIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
presheafIso
appHom
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
Opposite.unop
β€”β€”
pushforwardFamily_apply πŸ“–mathematicalβ€”pushforwardFamily
CategoryTheory.Functor.obj
CategoryTheory.Presieve.in_coverByImage
CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Sheaf.val
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.Presieve.in_coverByImage
naturality_apply
pushforwardFamily_compatible πŸ“–mathematicalβ€”CategoryTheory.Presieve.FamilyOfElements.Compatible
CategoryTheory.Sheaf.val
CategoryTheory.types
CategoryTheory.Presieve.coverByImage
pushforwardFamily
β€”CategoryTheory.Functor.IsCoverDense.ext
naturality_apply
CategoryTheory.Category.assoc
pushforwardFamily_def πŸ“–mathematicalβ€”pushforwardFamily
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
CategoryTheory.Functor.obj
CategoryTheory.Functor.op
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Presieve.CoverByImageStructure.obj
Nonempty.some
CategoryTheory.Presieve.CoverByImageStructure
CategoryTheory.Presieve.CoverByImageStructure.lift
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Presieve.CoverByImageStructure.map
β€”β€”
sheafIso_hom_val πŸ“–mathematicalβ€”CategoryTheory.Sheaf.Hom.val
CategoryTheory.types
CategoryTheory.Iso.hom
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafIso
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Sheaf.val
presheafIso
β€”β€”
sheafIso_inv_val πŸ“–mathematicalβ€”CategoryTheory.Sheaf.Hom.val
CategoryTheory.types
CategoryTheory.Iso.inv
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafIso
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Sheaf.val
presheafIso
β€”β€”

CategoryTheory.Functor.IsDenseSubsite

Definitions

NameCategoryTheorems
mapPreimage πŸ“–CompOp
11 mathmath: mapPreimage_map_of_fac, mapPreimage_id, mapPreimage_map, mapPreimage_comp_assoc, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_mapPreimage_condition, mapPreimage_comp_map, mapPreimage_comp_map_assoc, mapPreimage_comp, mapPreimage_of_eq, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.restriction_map, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.restriction_eq_of_fac

Theorems

NameKindAssumesProvesValidatesDepends On
coverPreserving πŸ“–mathematicalβ€”CategoryTheory.CoverPreservingβ€”functorPushforward_mem_iff
equalizer_mem πŸ“–mathematicalCategoryTheory.Functor.mapCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.equalizer
β€”functorPushforward_mem_iff
CategoryTheory.Functor.functorPushforward_equalizer_mem
isLocallyFaithful
faithful_sheafPushforwardContinuous πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.sheafPushforwardContinuous
instIsContinuous
β€”instIsContinuous
CategoryTheory.Functor.IsCoverDense.faithful_sheafPushforwardContinuous
isCoverDense
isLocallyFull
full_sheafPushforwardContinuous πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.sheafPushforwardContinuous
instIsContinuous
β€”instIsContinuous
CategoryTheory.Functor.IsCoverDense.full_sheafPushforwardContinuous
isCoverDense
isLocallyFull
functorPushforward_mem_iff πŸ“–mathematicalβ€”CategoryTheory.Sieve
CategoryTheory.Functor.obj
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.functorPushforward
β€”β€”
imageSieve_mem πŸ“–mathematicalβ€”CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Functor.imageSieve
β€”functorPushforward_mem_iff
CategoryTheory.Functor.functorPushforward_imageSieve_mem
isLocallyFull
instIsCocontinuous πŸ“–mathematicalβ€”CategoryTheory.Functor.IsCocontinuousβ€”functorPushforward_mem_iff
CategoryTheory.Functor.IsCoverDense.functorPullback_pushforward_covering
isCoverDense
isLocallyFull
instIsContinuous πŸ“–mathematicalβ€”CategoryTheory.Functor.IsContinuousβ€”CategoryTheory.Functor.IsCoverDense.isContinuous
isCoverDense
isLocallyFull
isLocallyFaithful
coverPreserving
isCoverDense πŸ“–mathematicalβ€”CategoryTheory.Functor.IsCoverDenseβ€”isCoverDense'
isCoverDense' πŸ“–mathematicalβ€”CategoryTheory.Functor.IsCoverDenseβ€”β€”
isLocallyFaithful πŸ“–mathematicalβ€”CategoryTheory.Functor.IsLocallyFaithfulβ€”isLocallyFaithful'
isLocallyFaithful' πŸ“–mathematicalβ€”CategoryTheory.Functor.IsLocallyFaithfulβ€”β€”
isLocallyFull πŸ“–mathematicalβ€”CategoryTheory.Functor.IsLocallyFullβ€”isLocallyFull'
isLocallyFull' πŸ“–mathematicalβ€”CategoryTheory.Functor.IsLocallyFullβ€”β€”
mapPreimage_comp πŸ“–mathematicalβ€”mapPreimage
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
β€”CategoryTheory.Presheaf.IsSheaf.hom_ext
CategoryTheory.Sheaf.cond
imageSieve_mem
CategoryTheory.GrothendieckTopology.pullback_stable
CategoryTheory.Category.assoc
mapPreimage_map_of_fac
CategoryTheory.Functor.map_comp
mapPreimage_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
mapPreimage
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapPreimage_comp
mapPreimage_comp_map πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
mapPreimage
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
β€”mapPreimage_comp
mapPreimage_map
mapPreimage_comp_map_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
mapPreimage
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapPreimage_comp_map
mapPreimage_id πŸ“–mathematicalβ€”mapPreimage
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
β€”CategoryTheory.Functor.map_id
mapPreimage_map
CategoryTheory.op_id
mapPreimage_map πŸ“–mathematicalβ€”mapPreimage
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”mapPreimage_of_eq
mapPreimage_map_of_fac πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
mapPreimage
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
β€”CategoryTheory.Presheaf.IsSheaf.hom_ext
CategoryTheory.Sheaf.cond
CategoryTheory.GrothendieckTopology.pullback_stable
imageSieve_mem
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.op_comp
mapPreimage.eq_1
CategoryTheory.Presheaf.IsSheaf.amalgamate_map
map_eq_of_eq
CategoryTheory.Functor.map_comp_assoc
mapPreimage_of_eq πŸ“–mathematicalCategoryTheory.Functor.mapmapPreimage
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
mapPreimage_map_of_fac
CategoryTheory.Category.id_comp
map_eq_of_eq πŸ“–mathematicalCategoryTheory.Functor.mapOpposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.Presheaf.IsSheaf.hom_ext
CategoryTheory.Sheaf.cond
equalizer_mem

CategoryTheory.Presieve

Definitions

NameCategoryTheorems
CoverByImageStructure πŸ“–CompData
1 mathmath: CategoryTheory.Functor.IsCoverDense.Types.pushforwardFamily_def
coverByImage πŸ“–CompOp
2 mathmath: CategoryTheory.Functor.IsCoverDense.Types.pushforwardFamily_compatible, in_coverByImage

Theorems

NameKindAssumesProvesValidatesDepends On
in_coverByImage πŸ“–mathematicalβ€”coverByImage
CategoryTheory.Functor.obj
β€”CategoryTheory.Category.id_comp

CategoryTheory.Presieve.CoverByImageStructure

Definitions

NameCategoryTheorems
map πŸ“–CompOp
3 mathmath: fac, CategoryTheory.Functor.IsCoverDense.Types.pushforwardFamily_def, fac_assoc
obj πŸ“–CompOp
3 mathmath: fac, CategoryTheory.Functor.IsCoverDense.Types.pushforwardFamily_def, fac_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
fac πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
obj
lift
map
β€”β€”
fac_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
obj
lift
map
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac

CategoryTheory.Sieve

Definitions

NameCategoryTheorems
coverByImage πŸ“–CompOp
2 mathmath: CategoryTheory.Functor.is_cover_of_isCoverDense, CategoryTheory.Functor.IsCoverDense.is_cover

---

← Back to Index