Documentation Verification Report

OneHypercoverDense

πŸ“ Source: Mathlib/CategoryTheory/Sites/DenseSubsite/OneHypercoverDense.lean

Statistics

MetricCount
DefinitionsIsOneHypercoverDense, OneHypercoverDenseData, SieveStruct, iβ‚€, q, presheaf, presheafMap, presheafObj, presheafObjIsLimit, presheafObjMultifork, presheafObjΟ€, restriction, res, isLimit, liftAux, sieve, toOneHypercover, toPreOneHypercoverDenseData, PreOneHypercoverDenseData, Iβ‚€, I₁, I₁', X, Y, f, multicospanIndex, multicospanMap, multicospanMapIso, multicospanShape, p₁, pβ‚‚, sieve₁₀, toPreOneHypercover, oneHypercoverDenseData
34
Theoremsnonempty_oneHypercoverDenseData, of_hasPullbacks, fac, fac_assoc, presheafMap_comp, presheafMap_comp_assoc, presheafMap_id, presheafMap_restriction, presheafMap_restriction_assoc, presheafMap_Ο€, presheafMap_Ο€_assoc, presheafObj_condition, presheafObj_condition_assoc, presheafObj_hom_ext, presheafObj_hom_ext_iff, presheafObj_mapPreimage_condition, presheaf_map, presheaf_obj, res_eq_res, restriction_eq_of_fac, restriction_map, isSheaf_iff, fac, fac_assoc, hom_ext, liftAux_fac, lift_map, lift_map_assoc, memβ‚€, mem₁, mem₁₀, sieve_apply, sieve_mem, toOneHypercover_toPreOneHypercover, multicospanIndex_fst, multicospanIndex_left, multicospanIndex_right, multicospanIndex_snd, multicospanMapIso_hom, multicospanMapIso_inv, multicospanMap_app, multicospanShape_L, multicospanShape_R, multicospanShape_fst, multicospanShape_snd, sieve₁₀_apply, toPreOneHypercover_Iβ‚€, toPreOneHypercover_I₁, toPreOneHypercover_X, toPreOneHypercover_Y, toPreOneHypercover_f, toPreOneHypercover_p₁, toPreOneHypercover_pβ‚‚, w, w_assoc, isDenseSubsite_of_isOneHypercoverDense
56
Total90

CategoryTheory.Functor

Definitions

NameCategoryTheorems
IsOneHypercoverDense πŸ“–CompData
1 mathmath: IsOneHypercoverDense.of_hasPullbacks
OneHypercoverDenseData πŸ“–CompData
1 mathmath: IsOneHypercoverDense.nonempty_oneHypercoverDenseData
PreOneHypercoverDenseData πŸ“–CompDataβ€”
oneHypercoverDenseData πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isDenseSubsite_of_isOneHypercoverDense πŸ“–mathematicalCategoryTheory.Sieve
obj
Set
Set.instMembership
CategoryTheory.GrothendieckTopology.sieves
CategoryTheory.Sieve.functorPushforward
IsDenseSubsiteβ€”CategoryTheory.GrothendieckTopology.superset_covering
OneHypercoverDenseData.memβ‚€

CategoryTheory.Functor.IsOneHypercoverDense

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_oneHypercoverDenseData πŸ“–mathematicalβ€”CategoryTheory.Functor.OneHypercoverDenseDataβ€”β€”
of_hasPullbacks πŸ“–mathematicalCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.ofArrows
CategoryTheory.Functor.obj
CategoryTheory.Functor.IsOneHypercoverDenseβ€”CategoryTheory.Presieve.instHasPullbackOfHasPairwisePullbacksOfArrows
CategoryTheory.Presieve.instHasPairwisePullbacksOfHasPullbacks
CategoryTheory.Functor.map_preimage
CategoryTheory.Category.assoc
CategoryTheory.Limits.pullback.condition
CategoryTheory.Functor.IsDenseSubsite.isCoverDense
CategoryTheory.Functor.functorPushforward_mem_iff
CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.GrothendieckTopology.pullback_stable
CategoryTheory.eq_whisker
CategoryTheory.Functor.map_injective
CategoryTheory.Functor.map_comp
CategoryTheory.Limits.pullback.lift_fst
CategoryTheory.Limits.pullback.lift_snd
CategoryTheory.Functor.IsCoverDense.functorPullback_pushforward_covering
CategoryTheory.Functor.IsLocallyFull.of_full

CategoryTheory.Functor.OneHypercoverDenseData

Definitions

NameCategoryTheorems
SieveStruct πŸ“–CompData
1 mathmath: sieve_apply
sieve πŸ“–CompOp
2 mathmath: sieve_apply, sieve_mem
toOneHypercover πŸ“–CompOp
2 mathmath: isSheaf_iff, toOneHypercover_toPreOneHypercover
toPreOneHypercoverDenseData πŸ“–CompOp
11 mathmath: essSurj.presheafMap_Ο€_assoc, essSurj.presheafObj_condition_assoc, SieveStruct.fac, memβ‚€, essSurj.presheafObj_condition, SieveStruct.fac_assoc, essSurj.presheafObj_hom_ext_iff, essSurj.presheafMap_Ο€, toOneHypercover_toPreOneHypercover, isSheaf_iff.lift_map, isSheaf_iff.lift_map_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
isSheaf_iff πŸ“–mathematicalβ€”CategoryTheory.Presheaf.IsSheaf
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Limits.IsLimit
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.PreOneHypercover.multicospanShape
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
toOneHypercover
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.PreOneHypercover.multicospanIndex
CategoryTheory.PreOneHypercover.multifork
β€”CategoryTheory.Functor.op_comp_isSheaf
CategoryTheory.Functor.IsDenseSubsite.instIsContinuous
CategoryTheory.Presheaf.isSheaf_iff_multifork
memβ‚€ πŸ“–mathematicalβ€”CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.PreZeroHypercover.sieveβ‚€
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.Functor.PreOneHypercoverDenseData.toPreOneHypercover
toPreOneHypercoverDenseData
β€”β€”
mem₁ πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.PreOneHypercoverDenseData.X
toPreOneHypercoverDenseData
CategoryTheory.Functor.PreOneHypercoverDenseData.f
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.PreOneHypercover.sieve₁
CategoryTheory.Functor.PreOneHypercoverDenseData.toPreOneHypercover
β€”CategoryTheory.Functor.IsDenseSubsite.isCoverDense
CategoryTheory.Presieve.BindStruct.hf
CategoryTheory.Presieve.BindStruct.hg
CategoryTheory.Presieve.FunctorPushforwardStructure.cover
CategoryTheory.GrothendieckTopology.bind_covering
CategoryTheory.Functor.is_cover_of_isCoverDense
CategoryTheory.GrothendieckTopology.pullback_stable
CategoryTheory.Functor.functorPushforward_mem_iff
CategoryTheory.GrothendieckTopology.intersection_covering
CategoryTheory.Functor.IsDenseSubsite.imageSieve_mem
mem₁₀
CategoryTheory.Category.assoc
CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.Functor.map_comp
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Presieve.FunctorPushforwardStructure.fac
CategoryTheory.Presieve.CoverByImageStructure.fac_assoc
CategoryTheory.Presieve.BindStruct.fac_assoc
mem₁₀ πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.PreOneHypercoverDenseData.X
toPreOneHypercoverDenseData
CategoryTheory.Functor.map
CategoryTheory.Functor.PreOneHypercoverDenseData.f
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Functor.PreOneHypercoverDenseData.sieve₁₀
β€”β€”
sieve_apply πŸ“–mathematicalβ€”CategoryTheory.Sieve.arrows
sieve
SieveStruct
β€”β€”
sieve_mem πŸ“–mathematicalβ€”CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
sieve
β€”CategoryTheory.Functor.IsDenseSubsite.isCoverDense
CategoryTheory.Functor.IsDenseSubsite.isLocallyFull
CategoryTheory.Functor.functorPushforward_mem_iff
CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.Sieve.ofArrows.fac
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Presieve.CoverByImageStructure.fac_assoc
CategoryTheory.GrothendieckTopology.bind_covering
CategoryTheory.GrothendieckTopology.pullback_stable
CategoryTheory.GrothendieckTopology.OneHypercover.memβ‚€
CategoryTheory.Functor.is_cover_of_isCoverDense
CategoryTheory.Functor.functorPushforward_imageSieve_mem
toOneHypercover_toPreOneHypercover πŸ“–mathematicalβ€”CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
toOneHypercover
CategoryTheory.Functor.PreOneHypercoverDenseData.toPreOneHypercover
toPreOneHypercoverDenseData
β€”β€”

CategoryTheory.Functor.OneHypercoverDenseData.SieveStruct

Definitions

NameCategoryTheorems
iβ‚€ πŸ“–CompOp
2 mathmath: fac, fac_assoc
q πŸ“–CompOp
2 mathmath: fac, fac_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
fac πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.PreOneHypercoverDenseData.X
CategoryTheory.Functor.OneHypercoverDenseData.toPreOneHypercoverDenseData
iβ‚€
q
CategoryTheory.Functor.PreOneHypercoverDenseData.f
CategoryTheory.Functor.map
β€”β€”
fac_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.PreOneHypercoverDenseData.X
CategoryTheory.Functor.OneHypercoverDenseData.toPreOneHypercoverDenseData
iβ‚€
q
CategoryTheory.Functor.PreOneHypercoverDenseData.f
CategoryTheory.Functor.map
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac

CategoryTheory.Functor.OneHypercoverDenseData.essSurj

Definitions

NameCategoryTheorems
presheaf πŸ“–CompOp
2 mathmath: presheaf_obj, presheaf_map
presheafMap πŸ“–CompOp
8 mathmath: presheafMap_Ο€_assoc, presheafMap_restriction_assoc, presheafMap_comp, presheafMap_comp_assoc, presheaf_map, presheafMap_id, presheafMap_restriction, presheafMap_Ο€
presheafObj πŸ“–CompOp
14 mathmath: presheaf_obj, presheafMap_Ο€_assoc, presheafObj_mapPreimage_condition, presheafMap_restriction_assoc, presheafMap_comp, presheafObj_condition_assoc, presheafMap_comp_assoc, presheafMap_id, presheafObj_condition, presheafMap_restriction, presheafObj_hom_ext_iff, presheafMap_Ο€, restriction_map, restriction_eq_of_fac
presheafObjIsLimit πŸ“–CompOpβ€”
presheafObjMultifork πŸ“–CompOpβ€”
presheafObjΟ€ πŸ“–CompOp
8 mathmath: presheafMap_Ο€_assoc, presheafObj_mapPreimage_condition, presheafObj_condition_assoc, presheafObj_condition, presheafObj_hom_ext_iff, presheafMap_Ο€, restriction_map, restriction_eq_of_fac
restriction πŸ“–CompOp
6 mathmath: presheafMap_Ο€_assoc, presheafMap_restriction_assoc, presheafMap_restriction, presheafMap_Ο€, restriction_map, restriction_eq_of_fac

Theorems

NameKindAssumesProvesValidatesDepends On
presheafMap_comp πŸ“–mathematicalβ€”presheafMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
presheafObj
β€”presheafObj_hom_ext
CategoryTheory.Category.assoc
presheafMap_Ο€
presheafMap_restriction
presheafMap_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
presheafObj
presheafMap
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
presheafMap_comp
presheafMap_id πŸ“–mathematicalβ€”presheafMap
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
presheafObj
β€”presheafObj_hom_ext
presheafMap_Ο€
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
restriction_eq_of_fac
CategoryTheory.Functor.IsDenseSubsite.mapPreimage_id
presheafMap_restriction πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
presheafObj
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
presheafMap
restriction
β€”CategoryTheory.Presheaf.IsSheaf.hom_ext
CategoryTheory.Sheaf.cond
CategoryTheory.GrothendieckTopology.bind_covering
CategoryTheory.Functor.cover_lift
CategoryTheory.Functor.IsDenseSubsite.instIsCocontinuous
CategoryTheory.GrothendieckTopology.pullback_stable
CategoryTheory.Functor.OneHypercoverDenseData.memβ‚€
CategoryTheory.Sieve.ofArrows.fac
CategoryTheory.Category.assoc
CategoryTheory.op_comp
restriction_map
presheafMap_Ο€_assoc
CategoryTheory.GrothendieckTopology.intersection_covering
CategoryTheory.Functor.IsDenseSubsite.imageSieve_mem
CategoryTheory.Functor.IsDenseSubsite.mapPreimage_map_of_fac
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.IsDenseSubsite.mapPreimage_map
presheafMap_restriction_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
presheafObj
presheafMap
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
restriction
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
presheafMap_restriction
presheafMap_Ο€ πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
presheafObj
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
CategoryTheory.Functor.PreOneHypercoverDenseData.X
CategoryTheory.Functor.OneHypercoverDenseData.toPreOneHypercoverDenseData
presheafMap
presheafObjΟ€
restriction
CategoryTheory.Functor.PreOneHypercoverDenseData.f
β€”CategoryTheory.Limits.Multiequalizer.lift_ΞΉ
presheafMap_Ο€_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
presheafObj
presheafMap
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
CategoryTheory.Functor.PreOneHypercoverDenseData.X
CategoryTheory.Functor.OneHypercoverDenseData.toPreOneHypercoverDenseData
presheafObjΟ€
restriction
CategoryTheory.Functor.PreOneHypercoverDenseData.f
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
presheafMap_Ο€
presheafObj_condition πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
presheafObj
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
CategoryTheory.Functor.PreOneHypercoverDenseData.X
CategoryTheory.Functor.OneHypercoverDenseData.toPreOneHypercoverDenseData
CategoryTheory.Functor.PreOneHypercoverDenseData.Y
presheafObjΟ€
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.PreOneHypercoverDenseData.p₁
CategoryTheory.Functor.PreOneHypercoverDenseData.pβ‚‚
β€”CategoryTheory.Limits.Multiequalizer.condition
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
presheafObj_condition_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
presheafObj
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
CategoryTheory.Functor.PreOneHypercoverDenseData.X
CategoryTheory.Functor.OneHypercoverDenseData.toPreOneHypercoverDenseData
presheafObjΟ€
CategoryTheory.Functor.PreOneHypercoverDenseData.Y
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.PreOneHypercoverDenseData.p₁
CategoryTheory.Functor.PreOneHypercoverDenseData.pβ‚‚
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
presheafObj_condition
presheafObj_hom_ext πŸ“–β€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
presheafObj
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
CategoryTheory.Functor.PreOneHypercoverDenseData.X
CategoryTheory.Functor.OneHypercoverDenseData.toPreOneHypercoverDenseData
presheafObjΟ€
β€”β€”CategoryTheory.Limits.Multiequalizer.hom_ext
presheafObj_hom_ext_iff πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
presheafObj
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
CategoryTheory.Functor.PreOneHypercoverDenseData.X
CategoryTheory.Functor.OneHypercoverDenseData.toPreOneHypercoverDenseData
presheafObjΟ€
β€”presheafObj_hom_ext
presheafObj_mapPreimage_condition πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.PreOneHypercoverDenseData.X
CategoryTheory.Functor.OneHypercoverDenseData.toPreOneHypercoverDenseData
CategoryTheory.Functor.PreOneHypercoverDenseData.f
presheafObj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
presheafObjΟ€
CategoryTheory.Functor.IsDenseSubsite.mapPreimage
β€”CategoryTheory.Presheaf.IsSheaf.hom_ext
CategoryTheory.Sheaf.cond
CategoryTheory.GrothendieckTopology.intersection_covering
CategoryTheory.Functor.IsDenseSubsite.imageSieve_mem
CategoryTheory.Functor.OneHypercoverDenseData.mem₁₀
CategoryTheory.Category.assoc
CategoryTheory.Functor.IsDenseSubsite.mapPreimage_map_of_fac
CategoryTheory.Functor.map_comp
presheafObj_condition_assoc
presheaf_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
presheaf
presheafMap
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
presheaf_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
presheaf
presheafObj
Opposite.unop
β€”β€”
restriction_eq_of_fac πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.PreOneHypercoverDenseData.X
CategoryTheory.Functor.OneHypercoverDenseData.toPreOneHypercoverDenseData
CategoryTheory.Functor.PreOneHypercoverDenseData.f
restriction
presheafObj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
presheafObjΟ€
CategoryTheory.Functor.IsDenseSubsite.mapPreimage
β€”CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
restriction_map
CategoryTheory.Category.id_comp
restriction_map πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.PreOneHypercoverDenseData.X
CategoryTheory.Functor.OneHypercoverDenseData.toPreOneHypercoverDenseData
CategoryTheory.Functor.PreOneHypercoverDenseData.f
CategoryTheory.Functor.map
presheafObj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
restriction
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
presheafObjΟ€
CategoryTheory.Functor.IsDenseSubsite.mapPreimage
β€”CategoryTheory.Sheaf.cond
CategoryTheory.GrothendieckTopology.Cover.Arrow.hf
CategoryTheory.Presheaf.IsSheaf.amalgamate_map
presheafObj_mapPreimage_condition
CategoryTheory.Functor.OneHypercoverDenseData.SieveStruct.fac

CategoryTheory.Functor.OneHypercoverDenseData.essSurj.restriction

Definitions

NameCategoryTheorems
res πŸ“–CompOp
1 mathmath: res_eq_res

Theorems

NameKindAssumesProvesValidatesDepends On
res_eq_res πŸ“–mathematicalβ€”resβ€”CategoryTheory.Presheaf.IsSheaf.hom_ext
CategoryTheory.Sheaf.cond
CategoryTheory.GrothendieckTopology.intersection_covering
CategoryTheory.Functor.IsDenseSubsite.imageSieve_mem
CategoryTheory.Functor.OneHypercoverDenseData.mem₁₀
CategoryTheory.Category.assoc
CategoryTheory.Functor.OneHypercoverDenseData.SieveStruct.fac
CategoryTheory.Functor.IsDenseSubsite.mapPreimage_comp_map
CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_mapPreimage_condition

CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff

Definitions

NameCategoryTheorems
isLimit πŸ“–CompOpβ€”
liftAux πŸ“–CompOp
3 mathmath: lift_map, lift_map_assoc, liftAux_fac

Theorems

NameKindAssumesProvesValidatesDepends On
fac πŸ“–mathematicalCategoryTheory.Presheaf.IsSheaf
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Functor.obj
Opposite.op
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
lift
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.GrothendieckTopology.Cover.Arrow.f
CategoryTheory.Limits.Multifork.ΞΉ
β€”CategoryTheory.Limits.Multifork.IsLimit.hom_ext
CategoryTheory.Presheaf.IsSheaf.hom_ext
CategoryTheory.Functor.cover_lift
CategoryTheory.Functor.IsDenseSubsite.instIsCocontinuous
CategoryTheory.GrothendieckTopology.pullback_stable
CategoryTheory.Functor.OneHypercoverDenseData.memβ‚€
CategoryTheory.Functor.IsDenseSubsite.imageSieve_mem
CategoryTheory.Category.assoc
CategoryTheory.Sieve.downward_closed
CategoryTheory.GrothendieckTopology.Cover.Arrow.hf
CategoryTheory.Functor.map_comp
lift_map_assoc
CategoryTheory.op_comp
liftAux_fac
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Limits.Multifork.condition
fac_assoc πŸ“–mathematicalCategoryTheory.Presheaf.IsSheaf
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Functor.obj
Opposite.op
lift
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.GrothendieckTopology.Cover.Arrow.f
CategoryTheory.Limits.Multifork.ΞΉ
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
hom_ext πŸ“–β€”CategoryTheory.Presheaf.IsSheaf
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Functor.obj
Opposite.op
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.GrothendieckTopology.Cover.Arrow.f
β€”β€”CategoryTheory.Limits.Multifork.IsLimit.hom_ext
CategoryTheory.Presheaf.IsSheaf.hom_ext
CategoryTheory.Functor.cover_lift
CategoryTheory.Functor.IsDenseSubsite.instIsCocontinuous
CategoryTheory.GrothendieckTopology.pullback_stable
CategoryTheory.Category.assoc
liftAux_fac πŸ“–mathematicalCategoryTheory.Presheaf.IsSheaf
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.PreOneHypercoverDenseData.X
CategoryTheory.Functor.OneHypercoverDenseData.toPreOneHypercoverDenseData
CategoryTheory.Functor.map
CategoryTheory.Functor.PreOneHypercoverDenseData.f
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
Opposite.op
liftAux
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.Multifork.ΞΉ
β€”CategoryTheory.Presheaf.IsSheaf.amalgamate_map
lift_map πŸ“–mathematicalCategoryTheory.Presheaf.IsSheaf
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Functor.obj
Opposite.op
CategoryTheory.Functor.PreOneHypercoverDenseData.X
CategoryTheory.Functor.OneHypercoverDenseData.toPreOneHypercoverDenseData
lift
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.PreOneHypercoverDenseData.f
liftAux
β€”CategoryTheory.Limits.Multifork.IsLimit.fac
lift_map_assoc πŸ“–mathematicalCategoryTheory.Presheaf.IsSheaf
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Functor.obj
Opposite.op
lift
CategoryTheory.Functor.PreOneHypercoverDenseData.X
CategoryTheory.Functor.OneHypercoverDenseData.toPreOneHypercoverDenseData
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.PreOneHypercoverDenseData.f
liftAux
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_map

CategoryTheory.Functor.PreOneHypercoverDenseData

Definitions

NameCategoryTheorems
Iβ‚€ πŸ“–CompOp
8 mathmath: multicospanShape_L, multicospanShape_fst, multicospanShape_snd, multicospanMap_app, toPreOneHypercover_Iβ‚€, multicospanIndex_right, multicospanIndex_fst, multicospanIndex_snd
I₁ πŸ“–CompOp
8 mathmath: toPreOneHypercover_I₁, multicospanShape_fst, multicospanShape_snd, multicospanMap_app, multicospanIndex_right, multicospanIndex_fst, multicospanIndex_snd, sieve₁₀_apply
I₁' πŸ“–CompOp
1 mathmath: multicospanShape_R
X πŸ“–CompOp
19 mathmath: w_assoc, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafMap_Ο€_assoc, toPreOneHypercover_pβ‚‚, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition_assoc, w, multicospanMap_app, CategoryTheory.Functor.OneHypercoverDenseData.SieveStruct.fac, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition, toPreOneHypercover_X, CategoryTheory.Functor.OneHypercoverDenseData.SieveStruct.fac_assoc, multicospanIndex_fst, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_hom_ext_iff, multicospanIndex_left, multicospanIndex_snd, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafMap_Ο€, sieve₁₀_apply, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.lift_map, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.lift_map_assoc, toPreOneHypercover_p₁
Y πŸ“–CompOp
12 mathmath: w_assoc, toPreOneHypercover_pβ‚‚, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition_assoc, w, multicospanMap_app, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition, multicospanIndex_right, multicospanIndex_fst, multicospanIndex_snd, toPreOneHypercover_Y, sieve₁₀_apply, toPreOneHypercover_p₁
f πŸ“–CompOp
9 mathmath: w_assoc, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafMap_Ο€_assoc, w, CategoryTheory.Functor.OneHypercoverDenseData.SieveStruct.fac, toPreOneHypercover_f, CategoryTheory.Functor.OneHypercoverDenseData.SieveStruct.fac_assoc, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafMap_Ο€, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.lift_map, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.lift_map_assoc
multicospanIndex πŸ“–CompOp
7 mathmath: multicospanMap_app, multicospanMapIso_inv, multicospanIndex_right, multicospanIndex_fst, multicospanIndex_left, multicospanIndex_snd, multicospanMapIso_hom
multicospanMap πŸ“–CompOp
3 mathmath: multicospanMap_app, multicospanMapIso_inv, multicospanMapIso_hom
multicospanMapIso πŸ“–CompOp
2 mathmath: multicospanMapIso_inv, multicospanMapIso_hom
multicospanShape πŸ“–CompOp
11 mathmath: multicospanShape_L, multicospanShape_fst, multicospanShape_snd, multicospanMap_app, multicospanMapIso_inv, multicospanIndex_right, multicospanIndex_fst, multicospanIndex_left, multicospanIndex_snd, multicospanShape_R, multicospanMapIso_hom
p₁ πŸ“–CompOp
7 mathmath: w_assoc, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition_assoc, w, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition, multicospanIndex_fst, sieve₁₀_apply, toPreOneHypercover_p₁
pβ‚‚ πŸ“–CompOp
7 mathmath: w_assoc, toPreOneHypercover_pβ‚‚, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition_assoc, w, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition, multicospanIndex_snd, sieve₁₀_apply
sieve₁₀ πŸ“–CompOp
2 mathmath: CategoryTheory.Functor.OneHypercoverDenseData.mem₁₀, sieve₁₀_apply
toPreOneHypercover πŸ“–CompOp
10 mathmath: CategoryTheory.Functor.OneHypercoverDenseData.mem₁, toPreOneHypercover_pβ‚‚, toPreOneHypercover_I₁, toPreOneHypercover_Iβ‚€, CategoryTheory.Functor.OneHypercoverDenseData.memβ‚€, toPreOneHypercover_X, toPreOneHypercover_f, CategoryTheory.Functor.OneHypercoverDenseData.toOneHypercover_toPreOneHypercover, toPreOneHypercover_Y, toPreOneHypercover_p₁

Theorems

NameKindAssumesProvesValidatesDepends On
multicospanIndex_fst πŸ“–mathematicalβ€”CategoryTheory.Limits.MulticospanIndex.fst
multicospanShape
multicospanIndex
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Opposite.op
X
CategoryTheory.Limits.MulticospanShape.fst
Y
Iβ‚€
I₁
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
p₁
β€”β€”
multicospanIndex_left πŸ“–mathematicalβ€”CategoryTheory.Limits.MulticospanIndex.left
multicospanShape
multicospanIndex
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
X
β€”β€”
multicospanIndex_right πŸ“–mathematicalβ€”CategoryTheory.Limits.MulticospanIndex.right
multicospanShape
multicospanIndex
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
Y
Iβ‚€
I₁
β€”β€”
multicospanIndex_snd πŸ“–mathematicalβ€”CategoryTheory.Limits.MulticospanIndex.snd
multicospanShape
multicospanIndex
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Opposite.op
X
CategoryTheory.Limits.MulticospanShape.snd
Y
Iβ‚€
I₁
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
pβ‚‚
β€”β€”
multicospanMapIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Limits.WalkingMulticospan
multicospanShape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Functor.category
CategoryTheory.Limits.MulticospanIndex.multicospan
multicospanIndex
multicospanMapIso
multicospanMap
Opposite
CategoryTheory.Category.opposite
β€”β€”
multicospanMapIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Limits.WalkingMulticospan
multicospanShape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Functor.category
CategoryTheory.Limits.MulticospanIndex.multicospan
multicospanIndex
multicospanMapIso
multicospanMap
Opposite
CategoryTheory.Category.opposite
β€”β€”
multicospanMap_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingMulticospan
multicospanShape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
multicospanIndex
multicospanMap
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
X
Y
Iβ‚€
I₁
β€”β€”
multicospanShape_L πŸ“–mathematicalβ€”CategoryTheory.Limits.MulticospanShape.L
multicospanShape
Iβ‚€
β€”β€”
multicospanShape_R πŸ“–mathematicalβ€”CategoryTheory.Limits.MulticospanShape.R
multicospanShape
I₁'
β€”β€”
multicospanShape_fst πŸ“–mathematicalβ€”CategoryTheory.Limits.MulticospanShape.fst
multicospanShape
Iβ‚€
I₁
β€”β€”
multicospanShape_snd πŸ“–mathematicalβ€”CategoryTheory.Limits.MulticospanShape.snd
multicospanShape
Iβ‚€
I₁
β€”β€”
sieve₁₀_apply πŸ“–mathematicalβ€”CategoryTheory.Sieve.arrows
sieve₁₀
I₁
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Y
X
CategoryTheory.CategoryStruct.comp
p₁
pβ‚‚
β€”β€”
toPreOneHypercover_Iβ‚€ πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.Iβ‚€
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toPreOneHypercover
Iβ‚€
β€”β€”
toPreOneHypercover_I₁ πŸ“–mathematicalβ€”CategoryTheory.PreOneHypercover.I₁
toPreOneHypercover
I₁
β€”β€”
toPreOneHypercover_X πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toPreOneHypercover
CategoryTheory.Functor.obj
X
β€”β€”
toPreOneHypercover_Y πŸ“–mathematicalβ€”CategoryTheory.PreOneHypercover.Y
toPreOneHypercover
CategoryTheory.Functor.obj
Y
β€”β€”
toPreOneHypercover_f πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.f
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toPreOneHypercover
f
β€”β€”
toPreOneHypercover_p₁ πŸ“–mathematicalβ€”CategoryTheory.PreOneHypercover.p₁
toPreOneHypercover
CategoryTheory.Functor.map
Y
X
p₁
β€”β€”
toPreOneHypercover_pβ‚‚ πŸ“–mathematicalβ€”CategoryTheory.PreOneHypercover.pβ‚‚
toPreOneHypercover
CategoryTheory.Functor.map
Y
X
pβ‚‚
β€”β€”
w πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Y
X
CategoryTheory.Functor.map
p₁
f
pβ‚‚
β€”β€”
w_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Y
X
CategoryTheory.Functor.map
p₁
f
pβ‚‚
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w

---

← Back to Index