| Name | Category | Theorems |
Iβ π | CompOp | 8 mathmath: multicospanShape_L, multicospanShape_fst, multicospanShape_snd, multicospanMap_app, toPreOneHypercover_Iβ, multicospanIndex_right, multicospanIndex_fst, multicospanIndex_snd
|
Iβ π | CompOp | 8 mathmath: toPreOneHypercover_Iβ, multicospanShape_fst, multicospanShape_snd, multicospanMap_app, multicospanIndex_right, multicospanIndex_fst, multicospanIndex_snd, sieveββ_apply
|
Iβ' π | CompOp | 1 mathmath: multicospanShape_R
|
X π | CompOp | 19 mathmath: w_assoc, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafMap_Ο_assoc, toPreOneHypercover_pβ, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition_assoc, w, multicospanMap_app, CategoryTheory.Functor.OneHypercoverDenseData.SieveStruct.fac, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition, toPreOneHypercover_X, CategoryTheory.Functor.OneHypercoverDenseData.SieveStruct.fac_assoc, multicospanIndex_fst, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_hom_ext_iff, multicospanIndex_left, multicospanIndex_snd, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafMap_Ο, sieveββ_apply, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.lift_map, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.lift_map_assoc, toPreOneHypercover_pβ
|
Y π | CompOp | 12 mathmath: w_assoc, toPreOneHypercover_pβ, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition_assoc, w, multicospanMap_app, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition, multicospanIndex_right, multicospanIndex_fst, multicospanIndex_snd, toPreOneHypercover_Y, sieveββ_apply, toPreOneHypercover_pβ
|
f π | CompOp | 9 mathmath: w_assoc, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafMap_Ο_assoc, w, CategoryTheory.Functor.OneHypercoverDenseData.SieveStruct.fac, toPreOneHypercover_f, CategoryTheory.Functor.OneHypercoverDenseData.SieveStruct.fac_assoc, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafMap_Ο, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.lift_map, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff.lift_map_assoc
|
multicospanIndex π | CompOp | 7 mathmath: multicospanMap_app, multicospanMapIso_inv, multicospanIndex_right, multicospanIndex_fst, multicospanIndex_left, multicospanIndex_snd, multicospanMapIso_hom
|
multicospanMap π | CompOp | 3 mathmath: multicospanMap_app, multicospanMapIso_inv, multicospanMapIso_hom
|
multicospanMapIso π | CompOp | 2 mathmath: multicospanMapIso_inv, multicospanMapIso_hom
|
multicospanShape π | CompOp | 11 mathmath: multicospanShape_L, multicospanShape_fst, multicospanShape_snd, multicospanMap_app, multicospanMapIso_inv, multicospanIndex_right, multicospanIndex_fst, multicospanIndex_left, multicospanIndex_snd, multicospanShape_R, multicospanMapIso_hom
|
pβ π | CompOp | 7 mathmath: w_assoc, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition_assoc, w, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition, multicospanIndex_fst, sieveββ_apply, toPreOneHypercover_pβ
|
pβ π | CompOp | 7 mathmath: w_assoc, toPreOneHypercover_pβ, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition_assoc, w, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition, multicospanIndex_snd, sieveββ_apply
|
sieveββ π | CompOp | 2 mathmath: CategoryTheory.Functor.OneHypercoverDenseData.memββ, sieveββ_apply
|
toPreOneHypercover π | CompOp | 10 mathmath: CategoryTheory.Functor.OneHypercoverDenseData.memβ, toPreOneHypercover_pβ, toPreOneHypercover_Iβ, toPreOneHypercover_Iβ, CategoryTheory.Functor.OneHypercoverDenseData.memβ, toPreOneHypercover_X, toPreOneHypercover_f, CategoryTheory.Functor.OneHypercoverDenseData.toOneHypercover_toPreOneHypercover, toPreOneHypercover_Y, toPreOneHypercover_pβ
|