Documentation Verification Report

DescentData

📁 Source: Mathlib/CategoryTheory/Sites/Descent/DescentData.lean

Statistics

MetricCount
DefinitionsDescentData, hom, hom, instCategory, iso, isoMk, obj, ofObj, pullFunctor, pullFunctorCompIso, pullFunctorEquivalence, pullFunctorIdIso, pullFunctorIso, pullFunctorObj, pullFunctorObjHom, subtypeCompatibleHomEquiv, toDescentDataCompPullFunctorIso, IsPrestackFor, fullyFaithful, IsStackFor, fullyFaithfulToDescentData, toDescentData
22
Theoremscomm, comm_assoc, ext, ext_iff, comp_hom, comp_hom_assoc, exists_equivalence_of_sieve_eq, hom_comp, hom_comp_assoc, hom_ext, hom_ext_iff, hom_self, id_hom, instIsIsoαCategoryObjLocallyDiscreteOppositeCatMkOpHom, isEquivalence_toDescentData_iff_of_sieve_eq, isoMk_hom_hom, isoMk_inv_hom, iso_hom, iso_inv, nonempty_fullyFaithful_toDescentData_iff_of_sieve_eq, ofObj_hom, ofObj_obj, pullFunctorCompIso_hom_app_hom, pullFunctorCompIso_inv_app_hom, pullFunctorEquivalence_counitIso, pullFunctorEquivalence_functor, pullFunctorEquivalence_inverse, pullFunctorEquivalence_unitIso, pullFunctorIdIso_hom_app_hom, pullFunctorIdIso_inv_app_hom, pullFunctorIso_hom_app_hom, pullFunctorIso_inv_app_hom, pullFunctorObjHom_eq, pullFunctorObjHom_eq_assoc, pullFunctorObj_hom, pullFunctorObj_obj, pullFunctor_map_hom, pullFunctor_obj, pullHom_hom, subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv, of_isPrestackFor, isSheafFor', nonempty_fullyFaithful, IsPrestackFor_generate_iff, essSurj, isEquivalence, isPrestackFor, IsStackFor_generate_iff, bijective_toDescentData_map_iff, isPrestackFor, isPrestackFor', isPrestackFor_iff, isPrestackFor_iff_isSheafFor, isPrestackFor_iff_isSheafFor', isPrestackFor_iff_of_sieve_eq, isPrestackFor_ofArrows_iff, isStackFor_iff, isStackFor_iff_of_sieve_eq, isStackFor_ofArrows_iff, toDescentData_map_hom, toDescentData_obj
61
Total83

CategoryTheory.Pseudofunctor

Definitions

NameCategoryTheorems
DescentData 📖CompData
36 mathmath: DescentData.isEquivalence_toDescentData_of_sieve_le, DescentData.subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv, DescentData.pullFunctorCompIso_inv_app_hom, isEquivalence_toDescentData, DescentData.pullFunctorIso_inv_app_hom, DescentData.pullFunctor_map_hom, DescentData.isoMk_inv_hom, DescentData.comp_hom, isStackFor_ofArrows_iff, DescentData.nonempty_fullyFaithful_toDescentData_iff_of_sieve_eq, DescentData.pullFunctorEquivalence_inverse, isPrestackFor_ofArrows_iff, isStackFor_iff, bijective_toDescentData_map_iff, DescentData.pullFunctorEquivalence_functor, DescentData.pullFunctorIso_hom_app_hom, IsStack.essSurj_of_sieve, toDescentData_obj, isPrestackFor_iff, IsStackFor.isEquivalence, DescentData.full_pullFunctor, toDescentData_map_hom, IsStackFor.essSurj, DescentData.exists_equivalence_of_sieve_eq, DescentData.pullFunctorIdIso_inv_app_hom, DescentData.isEquivalence_toDescentData_iff_of_sieve_eq, DescentData.pullFunctorIdIso_hom_app_hom, DescentData.id_hom, DescentData.pullFunctorCompIso_hom_app_hom, DescentData.isoMk_hom_hom, DescentData.comp_hom_assoc, DescentData.pullFunctorEquivalence_counitIso, DescentData.faithful_pullFunctor, DescentData.pullFunctorEquivalence_unitIso, DescentData.pullFunctor_obj, IsPrestackFor.nonempty_fullyFaithful
IsPrestackFor 📖CompData
9 mathmath: isPrestackFor', isPrestackFor_ofArrows_iff, isPrestackFor_iff_isSheafFor, IsStackFor.isPrestackFor, isPrestackFor_iff, IsPrestackFor_generate_iff, isPrestackFor, isPrestackFor_iff_isSheafFor', isPrestackFor_iff_of_sieve_eq
IsStackFor 📖CompData
6 mathmath: isStackFor_ofArrows_iff, isStackFor, IsStackFor_generate_iff, isStackFor_iff_of_sieve_eq, isStackFor_iff, isStackFor'
fullyFaithfulToDescentData 📖CompOp
toDescentData 📖CompOp
17 mathmath: DescentData.isEquivalence_toDescentData_of_sieve_le, DescentData.subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv, isEquivalence_toDescentData, isStackFor_ofArrows_iff, DescentData.nonempty_fullyFaithful_toDescentData_iff_of_sieve_eq, isPrestackFor_ofArrows_iff, isStackFor_iff, bijective_toDescentData_map_iff, IsStack.essSurj_of_sieve, toDescentData_obj, isPrestackFor_iff, IsStackFor.isEquivalence, toDescentData_map_hom, IsStackFor.essSurj, DescentData.exists_equivalence_of_sieve_eq, DescentData.isEquivalence_toDescentData_iff_of_sieve_eq, IsPrestackFor.nonempty_fullyFaithful

Theorems

NameKindAssumesProvesValidatesDepends On
IsPrestackFor_generate_iff 📖mathematicalIsPrestackFor
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.generate
isPrestackFor_iff_of_sieve_eq
CategoryTheory.Sieve.generate_sieve
IsStackFor_generate_iff 📖mathematicalIsStackFor
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.generate
isStackFor_iff_of_sieve_eq
CategoryTheory.Sieve.generate_sieve
bijective_toDescentData_map_iff 📖mathematicalFunction.Bijective
Quiver.Hom
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
DescentData
DescentData.instCategory
CategoryTheory.Functor.obj
toDescentData
CategoryTheory.Functor.map
CategoryTheory.Presieve.IsSheafFor
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.CategoryStruct.id
presheafHom
CategoryTheory.Presieve.ofArrows
CategoryTheory.Over.homMk
CategoryTheory.Presieve.isSheafFor_ofArrows_iff_bijective_toCompabible
Function.Bijective.of_comp_iff'
Equiv.bijective
Function.Bijective.of_comp_iff
DescentData.subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv
isPrestackFor 📖mathematicalCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.generate
IsPrestackForisPrestackFor_iff
CategoryTheory.Sieve.ofArrows_category'
isPrestackFor' 📖mathematicalCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
IsPrestackFor
CategoryTheory.Sieve.arrows
isPrestackFor
CategoryTheory.Sieve.generate_sieve
isPrestackFor_iff 📖mathematicalIsPrestackFor
CategoryTheory.Functor.FullyFaithful
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
DescentData
CategoryTheory.Presieve.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma.hom
DescentData.instCategory
toDescentData
isPrestackFor_iff_isSheafFor 📖mathematicalIsPrestackFor
CategoryTheory.Sieve.arrows
CategoryTheory.Presieve.IsSheafFor
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
presheafHom
DFunLike.coe
Equiv
CategoryTheory.Sieve
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Sieve.overEquiv
isPrestackFor_iff
CategoryTheory.Functor.FullyFaithful.nonempty_iff_map_bijective
bijective_toDescentData_map_iff
le_antisymm
CategoryTheory.Over.mk_surjective
CategoryTheory.Category.comp_id
CategoryTheory.Over.OverMorphism.ext
CategoryTheory.Over.w
isPrestackFor_iff_isSheafFor' 📖mathematicalIsPrestackFor
CategoryTheory.Sieve.arrows
CategoryTheory.Presieve.IsSheafFor
CategoryTheory.Over
CategoryTheory.instCategoryOver
presheafHom
DFunLike.coe
Equiv
CategoryTheory.Sieve
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Sieve.overEquiv
isPrestackFor_iff_isSheafFor
le_antisymm
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Over.w
CategoryTheory.Over.OverMorphism.ext
CategoryTheory.Functor.congr_map
CategoryTheory.Sieve.downward_closed
CategoryTheory.Presieve.isSheafFor_over_map_op_comp_iff
CategoryTheory.Presieve.isSheafFor_iff_of_iso
isPrestackFor_iff_of_sieve_eq 📖mathematicalCategoryTheory.Sieve.generateIsPrestackForCategoryTheory.Presieve.exists_eq_ofArrows
DescentData.nonempty_fullyFaithful_toDescentData_iff_of_sieve_eq
CategoryTheory.Sieve.ofArrows_category'
isPrestackFor_ofArrows_iff 📖mathematicalIsPrestackFor
CategoryTheory.Presieve.ofArrows
CategoryTheory.Functor.FullyFaithful
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
DescentData
DescentData.instCategory
toDescentData
DescentData.nonempty_fullyFaithful_toDescentData_iff_of_sieve_eq
CategoryTheory.Sieve.ofArrows_category'
isStackFor_iff 📖mathematicalIsStackFor
CategoryTheory.Functor.IsEquivalence
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
DescentData
CategoryTheory.Presieve.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma.hom
DescentData.instCategory
toDescentData
isStackFor_iff_of_sieve_eq 📖mathematicalCategoryTheory.Sieve.generateIsStackForCategoryTheory.Presieve.exists_eq_ofArrows
DescentData.isEquivalence_toDescentData_iff_of_sieve_eq
CategoryTheory.Sieve.ofArrows_category'
isStackFor_ofArrows_iff 📖mathematicalIsStackFor
CategoryTheory.Presieve.ofArrows
CategoryTheory.Functor.IsEquivalence
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
DescentData
DescentData.instCategory
toDescentData
DescentData.isEquivalence_toDescentData_iff_of_sieve_eq
CategoryTheory.Sieve.ofArrows_category'
toDescentData_map_hom 📖mathematicalDescentData.Hom.hom
DescentData.ofObj
CategoryTheory.Functor.map
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
DescentData
DescentData.instCategory
toDescentData
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
toDescentData_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
DescentData
DescentData.instCategory
toDescentData
DescentData.ofObj

CategoryTheory.Pseudofunctor.DescentData

Definitions

NameCategoryTheorems
hom 📖CompOp
15 mathmath: ofObj_hom, pullFunctorIso_inv_app_hom, iso_hom, iso_inv, instIsIsoαCategoryObjLocallyDiscreteOppositeCatMkOpHom, Hom.comm_assoc, hom_comp_assoc, pullHom_hom, pullFunctorIso_hom_app_hom, pullFunctorObjHom_eq_assoc, pullFunctorObj_hom, pullFunctorObjHom_eq, hom_self, hom_comp, Hom.comm
instCategory 📖CompOp
36 mathmath: isEquivalence_toDescentData_of_sieve_le, subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv, pullFunctorCompIso_inv_app_hom, CategoryTheory.Pseudofunctor.isEquivalence_toDescentData, pullFunctorIso_inv_app_hom, pullFunctor_map_hom, isoMk_inv_hom, comp_hom, CategoryTheory.Pseudofunctor.isStackFor_ofArrows_iff, nonempty_fullyFaithful_toDescentData_iff_of_sieve_eq, pullFunctorEquivalence_inverse, CategoryTheory.Pseudofunctor.isPrestackFor_ofArrows_iff, CategoryTheory.Pseudofunctor.isStackFor_iff, CategoryTheory.Pseudofunctor.bijective_toDescentData_map_iff, pullFunctorEquivalence_functor, pullFunctorIso_hom_app_hom, CategoryTheory.Pseudofunctor.IsStack.essSurj_of_sieve, CategoryTheory.Pseudofunctor.toDescentData_obj, CategoryTheory.Pseudofunctor.isPrestackFor_iff, CategoryTheory.Pseudofunctor.IsStackFor.isEquivalence, full_pullFunctor, CategoryTheory.Pseudofunctor.toDescentData_map_hom, CategoryTheory.Pseudofunctor.IsStackFor.essSurj, exists_equivalence_of_sieve_eq, pullFunctorIdIso_inv_app_hom, isEquivalence_toDescentData_iff_of_sieve_eq, pullFunctorIdIso_hom_app_hom, id_hom, pullFunctorCompIso_hom_app_hom, isoMk_hom_hom, comp_hom_assoc, pullFunctorEquivalence_counitIso, faithful_pullFunctor, pullFunctorEquivalence_unitIso, pullFunctor_obj, CategoryTheory.Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful
iso 📖CompOp
2 mathmath: iso_hom, iso_inv
isoMk 📖CompOp
2 mathmath: isoMk_inv_hom, isoMk_hom_hom
obj 📖CompOp
23 mathmath: pullFunctorCompIso_inv_app_hom, pullFunctor_map_hom, isoMk_inv_hom, comp_hom, iso_hom, iso_inv, instIsIsoαCategoryObjLocallyDiscreteOppositeCatMkOpHom, Hom.comm_assoc, ofObj_obj, hom_comp_assoc, pullHom_hom, pullFunctorObj_obj, pullFunctorObjHom_eq_assoc, pullFunctorIdIso_inv_app_hom, pullFunctorIdIso_hom_app_hom, id_hom, pullFunctorCompIso_hom_app_hom, isoMk_hom_hom, pullFunctorObjHom_eq, hom_self, comp_hom_assoc, hom_comp, Hom.comm
ofObj 📖CompOp
4 mathmath: ofObj_hom, ofObj_obj, CategoryTheory.Pseudofunctor.toDescentData_obj, CategoryTheory.Pseudofunctor.toDescentData_map_hom
pullFunctor 📖CompOp
14 mathmath: pullFunctorCompIso_inv_app_hom, pullFunctorIso_inv_app_hom, pullFunctor_map_hom, pullFunctorEquivalence_inverse, pullFunctorEquivalence_functor, pullFunctorIso_hom_app_hom, full_pullFunctor, pullFunctorIdIso_inv_app_hom, pullFunctorIdIso_hom_app_hom, pullFunctorCompIso_hom_app_hom, pullFunctorEquivalence_counitIso, faithful_pullFunctor, pullFunctorEquivalence_unitIso, pullFunctor_obj
pullFunctorCompIso 📖CompOp
4 mathmath: pullFunctorCompIso_inv_app_hom, pullFunctorCompIso_hom_app_hom, pullFunctorEquivalence_counitIso, pullFunctorEquivalence_unitIso
pullFunctorEquivalence 📖CompOp
4 mathmath: pullFunctorEquivalence_inverse, pullFunctorEquivalence_functor, pullFunctorEquivalence_counitIso, pullFunctorEquivalence_unitIso
pullFunctorIdIso 📖CompOp
4 mathmath: pullFunctorIdIso_inv_app_hom, pullFunctorIdIso_hom_app_hom, pullFunctorEquivalence_counitIso, pullFunctorEquivalence_unitIso
pullFunctorIso 📖CompOp
4 mathmath: pullFunctorIso_inv_app_hom, pullFunctorIso_hom_app_hom, pullFunctorEquivalence_counitIso, pullFunctorEquivalence_unitIso
pullFunctorObj 📖CompOp
4 mathmath: pullFunctor_map_hom, pullFunctorObj_obj, pullFunctorObj_hom, pullFunctor_obj
pullFunctorObjHom 📖CompOp
3 mathmath: pullFunctorObjHom_eq_assoc, pullFunctorObj_hom, pullFunctorObjHom_eq
subtypeCompatibleHomEquiv 📖CompOp
1 mathmath: subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv
toDescentDataCompPullFunctorIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
comp_hom 📖mathematicalHom.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Pseudofunctor.DescentData
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
obj
comp_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
obj
Hom.hom
CategoryTheory.Pseudofunctor.DescentData
instCategory
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_hom
exists_equivalence_of_sieve_eq 📖mathematicalCategoryTheory.Sieve.ofArrowsCategoryTheory.Iso
CategoryTheory.Functor
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Pseudofunctor.DescentData
instCategory
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Pseudofunctor.toDescentData
CategoryTheory.Equivalence.functor
CategoryTheory.Category.comp_id
hom_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
obj
hom
hom_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
obj
hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
hom_comp
hom_ext 📖Hom.homHom.ext
hom_ext_iff 📖mathematicalHom.homhom_ext
hom_self 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
hom
CategoryTheory.CategoryStruct.id
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
obj
id_hom 📖mathematicalHom.hom
CategoryTheory.CategoryStruct.id
CategoryTheory.Pseudofunctor.DescentData
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
obj
instIsIsoαCategoryObjLocallyDiscreteOppositeCatMkOpHom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsIso
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
obj
hom
CategoryTheory.Iso.isIso_hom
isEquivalence_toDescentData_iff_of_sieve_eq 📖mathematicalCategoryTheory.Sieve.ofArrowsCategoryTheory.Functor.IsEquivalence
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Pseudofunctor.DescentData
instCategory
CategoryTheory.Pseudofunctor.toDescentData
exists_equivalence_of_sieve_eq
CategoryTheory.Functor.isEquivalence_iff_of_iso
CategoryTheory.Functor.isEquivalence_trans
CategoryTheory.Equivalence.isEquivalence_functor
CategoryTheory.Functor.isEquivalence_of_comp_right
isoMk_hom_hom 📖mathematicalHom.hom
CategoryTheory.Iso.hom
CategoryTheory.Pseudofunctor.DescentData
instCategory
isoMk
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
obj
isoMk_inv_hom 📖mathematicalHom.hom
CategoryTheory.Iso.inv
CategoryTheory.Pseudofunctor.DescentData
instCategory
isoMk
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
obj
iso_hom 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Iso.hom
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
obj
iso
hom
iso_inv 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Iso.inv
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
obj
iso
hom
nonempty_fullyFaithful_toDescentData_iff_of_sieve_eq 📖mathematicalCategoryTheory.Sieve.ofArrowsCategoryTheory.Functor.FullyFaithful
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Pseudofunctor.DescentData
instCategory
CategoryTheory.Pseudofunctor.toDescentData
exists_equivalence_of_sieve_eq
ofObj_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
hom
ofObj
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
CategoryTheory.NatTrans.app
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.Iso.inv
CategoryTheory.Pseudofunctor.mapComp'
CategoryTheory.Iso.hom
ofObj_obj 📖mathematicalobj
ofObj
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
pullFunctorCompIso_hom_app_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Hom.hom
CategoryTheory.Functor.obj
CategoryTheory.Pseudofunctor.DescentData
instCategory
CategoryTheory.Functor.comp
pullFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
pullFunctorCompIso
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.Iso.inv
CategoryTheory.Cat.instQuiver
CategoryTheory.Cat.Hom.instCategory
CategoryTheory.Pseudofunctor.mapComp'
obj
pullFunctorCompIso_inv_app_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Hom.hom
CategoryTheory.Functor.obj
CategoryTheory.Pseudofunctor.DescentData
instCategory
pullFunctor
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
pullFunctorCompIso
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.Iso.hom
CategoryTheory.Cat.instQuiver
CategoryTheory.Cat.Hom.instCategory
CategoryTheory.Pseudofunctor.mapComp'
obj
pullFunctorEquivalence_counitIso 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
CategoryTheory.Pseudofunctor.DescentData
instCategory
pullFunctorEquivalence
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
pullFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.id
pullFunctorCompIso
CategoryTheory.Iso.hom_inv_id
pullFunctorIso
pullFunctorIdIso
pullFunctorEquivalence_functor 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.functor
CategoryTheory.Pseudofunctor.DescentData
instCategory
pullFunctorEquivalence
pullFunctor
pullFunctorEquivalence_inverse 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.inverse
CategoryTheory.Pseudofunctor.DescentData
instCategory
pullFunctorEquivalence
pullFunctor
pullFunctorEquivalence_unitIso 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.unitIso
CategoryTheory.Pseudofunctor.DescentData
instCategory
pullFunctorEquivalence
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
pullFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.comp
CategoryTheory.Iso.symm
pullFunctorIdIso
pullFunctorIso
pullFunctorCompIso
CategoryTheory.Iso.inv_hom_id
pullFunctorIdIso_hom_app_hom 📖mathematicalHom.hom
CategoryTheory.Functor.obj
CategoryTheory.Pseudofunctor.DescentData
instCategory
pullFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
pullFunctorIdIso
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.Cat.instQuiver
CategoryTheory.Cat.Hom.instCategory
CategoryTheory.Pseudofunctor.mapId
obj
pullFunctorIdIso_inv_app_hom 📖mathematicalHom.hom
CategoryTheory.Functor.obj
CategoryTheory.Pseudofunctor.DescentData
instCategory
CategoryTheory.Functor.id
pullFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
pullFunctorIdIso
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.Cat.instQuiver
CategoryTheory.Cat.Hom.instCategory
CategoryTheory.Pseudofunctor.mapId
obj
pullFunctorIso_hom_app_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Hom.hom
CategoryTheory.Functor.obj
CategoryTheory.Pseudofunctor.DescentData
instCategory
pullFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
pullFunctorIso
hom
pullFunctorIso_inv_app_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Hom.hom
CategoryTheory.Functor.obj
CategoryTheory.Pseudofunctor.DescentData
instCategory
pullFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
pullFunctorIso
hom
pullFunctorObjHom_eq 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
pullFunctorObjHom
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
obj
CategoryTheory.NatTrans.app
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.Iso.inv
CategoryTheory.Pseudofunctor.mapComp'
hom
CategoryTheory.Iso.hom
CategoryTheory.Pseudofunctor.mapComp'_eq_mapComp
pullFunctorObjHom_eq_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
obj
pullFunctorObjHom
CategoryTheory.NatTrans.app
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.Iso.inv
CategoryTheory.Pseudofunctor.mapComp'
hom
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullFunctorObjHom_eq
pullFunctorObj_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
hom
pullFunctorObj
pullFunctorObjHom
pullFunctorObj_obj 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
pullFunctorObj
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
pullFunctor_map_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Hom.hom
pullFunctorObj
CategoryTheory.Functor.map
CategoryTheory.Pseudofunctor.DescentData
instCategory
pullFunctor
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
obj
pullFunctor_obj 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Pseudofunctor.DescentData
instCategory
pullFunctor
pullFunctorObj
pullHom_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.pullHom
obj
hom
subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv 📖mathematicalDFunLike.coe
Equiv
CategoryTheory.Presieve.Arrows.Compatible
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Pseudofunctor.presheafHom
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Over.homMk
Quiver.Hom
CategoryTheory.Pseudofunctor.DescentData
CategoryTheory.CategoryStruct.toQuiver
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Pseudofunctor.toDescentData
EquivLike.toFunLike
Equiv.instEquivLike
subtypeCompatibleHomEquiv
CategoryTheory.Presieve.Arrows.toCompatible
CategoryTheory.types
CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv
CategoryTheory.Functor.map
hom_ext
CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_app
CategoryTheory.locallyDiscreteBicategory.strict
CategoryTheory.Category.assoc
CategoryTheory.Cat.Hom.inv_hom_id_toNatTrans_app
CategoryTheory.Category.comp_id
CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_app_assoc
CategoryTheory.Cat.Hom.inv_hom_id_toNatTrans_app_assoc

CategoryTheory.Pseudofunctor.DescentData.Hom

Definitions

NameCategoryTheorems
hom 📖CompOp
17 mathmath: CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_inv_app_hom, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIso_inv_app_hom, CategoryTheory.Pseudofunctor.DescentData.pullFunctor_map_hom, CategoryTheory.Pseudofunctor.DescentData.isoMk_inv_hom, CategoryTheory.Pseudofunctor.DescentData.comp_hom, CategoryTheory.Pseudofunctor.DescentData.hom_ext_iff, comm_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIso_hom_app_hom, CategoryTheory.Pseudofunctor.toDescentData_map_hom, ext_iff, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_inv_app_hom, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_hom_app_hom, CategoryTheory.Pseudofunctor.DescentData.id_hom, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_hom_app_hom, CategoryTheory.Pseudofunctor.DescentData.isoMk_hom_hom, CategoryTheory.Pseudofunctor.DescentData.comp_hom_assoc, comm

Theorems

NameKindAssumesProvesValidatesDepends On
comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
CategoryTheory.Pseudofunctor.DescentData.obj
CategoryTheory.Functor.map
hom
CategoryTheory.Pseudofunctor.DescentData.hom
comm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
CategoryTheory.Pseudofunctor.DescentData.obj
CategoryTheory.Functor.map
hom
CategoryTheory.Pseudofunctor.DescentData.hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm
ext 📖hom
ext_iff 📖mathematicalhomext

CategoryTheory.Pseudofunctor.IsPrestack

Theorems

NameKindAssumesProvesValidatesDepends On
of_isPrestackFor 📖mathematicalCategoryTheory.Pseudofunctor.IsPrestackFor
CategoryTheory.Sieve.arrows
CategoryTheory.Pseudofunctor.IsPrestackCategoryTheory.isSheaf_iff_isSheaf_of_type
CategoryTheory.Over.mk_surjective
CategoryTheory.Pseudofunctor.IsPrestackFor.isSheafFor'

CategoryTheory.Pseudofunctor.IsPrestackFor

Definitions

NameCategoryTheorems
fullyFaithful 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isSheafFor' 📖mathematicalCategoryTheory.Pseudofunctor.IsPrestackFor
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Sieve.arrows
DFunLike.coe
Equiv
CategoryTheory.Sieve
CategoryTheory.Over
CategoryTheory.instCategoryOver
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Sieve.overEquiv
CategoryTheory.Presieve.IsSheafFor
CategoryTheory.Pseudofunctor.presheafHom
CategoryTheory.Over.mk_surjective
Equiv.symm_apply_apply
CategoryTheory.Pseudofunctor.isPrestackFor_iff_isSheafFor'
nonempty_fullyFaithful 📖mathematicalCategoryTheory.Pseudofunctor.IsPrestackForCategoryTheory.Functor.FullyFaithful
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Pseudofunctor.DescentData
CategoryTheory.Presieve.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma.hom
CategoryTheory.Pseudofunctor.DescentData.instCategory
CategoryTheory.Pseudofunctor.toDescentData

CategoryTheory.Pseudofunctor.IsStackFor

Theorems

NameKindAssumesProvesValidatesDepends On
essSurj 📖mathematicalCategoryTheory.Pseudofunctor.IsStackForCategoryTheory.Functor.EssSurj
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Pseudofunctor.DescentData
CategoryTheory.Presieve.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma.hom
CategoryTheory.Cat.str
CategoryTheory.Pseudofunctor.DescentData.instCategory
CategoryTheory.Pseudofunctor.toDescentData
isEquivalence
CategoryTheory.Functor.IsEquivalence.essSurj
isEquivalence 📖mathematicalCategoryTheory.Pseudofunctor.IsStackForCategoryTheory.Functor.IsEquivalence
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Pseudofunctor.DescentData
CategoryTheory.Presieve.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma.hom
CategoryTheory.Pseudofunctor.DescentData.instCategory
CategoryTheory.Pseudofunctor.toDescentData
isPrestackFor 📖mathematicalCategoryTheory.Pseudofunctor.IsStackForCategoryTheory.Pseudofunctor.IsPrestackForCategoryTheory.Functor.IsEquivalence.full
CategoryTheory.Pseudofunctor.isStackFor_iff
CategoryTheory.Functor.IsEquivalence.faithful

---

← Back to Index