Documentation Verification Report

IsPrestack

📁 Source: Mathlib/CategoryTheory/Sites/Descent/IsPrestack.lean

Statistics

MetricCount
DefinitionsIsPrestack, pullHom, overMapCompPresheafHomIso, presheafHom, presheafHomObjHomEquiv, sheafHom
6
TheoremsisSheaf, map_eq_pullHom, map_eq_pullHom_assoc, pullHom_id, pullHom_pullHom, presheafHomObjHomEquiv_apply, presheafHomObjHomEquiv_symm_apply, presheafHom_map, presheafHom_obj, sheafHom_val
10
Total16

CategoryTheory.Pseudofunctor

Definitions

NameCategoryTheorems
IsPrestack 📖CompData
3 mathmath: IsPrestack.of_isPrestackFor, IsPrestack.of_precoverage, IsStack.toIsPrestack
overMapCompPresheafHomIso 📖CompOp
presheafHom 📖CompOp
11 mathmath: DescentData.subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv, presheafHom_obj, isPrestackFor_iff_isSheafFor, bijective_toDescentData_map_iff, presheafHom_map, IsPrestack.isSheaf, presheafHomObjHomEquiv_apply, IsPrestackFor.isSheafFor', presheafHomObjHomEquiv_symm_apply, isPrestackFor_iff_isSheafFor', sheafHom_val
presheafHomObjHomEquiv 📖CompOp
3 mathmath: DescentData.subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv, presheafHomObjHomEquiv_apply, presheafHomObjHomEquiv_symm_apply
sheafHom 📖CompOp
1 mathmath: sheafHom_val

Theorems

NameKindAssumesProvesValidatesDepends On
presheafHomObjHomEquiv_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.types
presheafHom
CategoryTheory.CategoryStruct.id
EquivLike.toFunLike
Equiv.instEquivLike
presheafHomObjHomEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
CategoryTheory.LocallyDiscrete.categoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.Iso.hom
CategoryTheory.Cat.instQuiver
CategoryTheory.Cat.Hom.instCategory
mapId
CategoryTheory.Iso.inv
presheafHomObjHomEquiv_symm_apply 📖mathematicalDFunLike.coe
Equiv
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Over
CategoryTheory.Category.opposite
CategoryTheory.instCategoryOver
CategoryTheory.types
presheafHom
Opposite.op
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
toPrelaxFunctor
CategoryTheory.Cat.str
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
presheafHomObjHomEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
CategoryTheory.LocallyDiscrete.categoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.Iso.inv
CategoryTheory.Cat.instQuiver
CategoryTheory.Cat.Hom.instCategory
mapId
CategoryTheory.Iso.hom
presheafHom_map 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Over
CategoryTheory.Category.opposite
CategoryTheory.instCategoryOver
CategoryTheory.types
presheafHom
LocallyDiscreteOpToCat.pullHom
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Functor.id
Opposite.unop
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
presheafHom_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Over
CategoryTheory.Category.opposite
CategoryTheory.instCategoryOver
CategoryTheory.types
presheafHom
Quiver.Hom
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
toPrelaxFunctor
Opposite.op
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
CategoryTheory.Cat.str
CategoryTheory.Comma.right
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
Quiver.Hom.op
CategoryTheory.Comma.hom
sheafHom_val 📖mathematicalCategoryTheory.Sheaf.val
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.GrothendieckTopology.over
CategoryTheory.types
sheafHom
presheafHom

CategoryTheory.Pseudofunctor.IsPrestack

Theorems

NameKindAssumesProvesValidatesDepends On
isSheaf 📖mathematicalCategoryTheory.Presheaf.IsSheaf
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.types
CategoryTheory.GrothendieckTopology.over
CategoryTheory.Pseudofunctor.presheafHom

CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat

Definitions

NameCategoryTheorems
pullHom 📖CompOp
6 mathmath: CategoryTheory.Pseudofunctor.presheafHom_map, CategoryTheory.Pseudofunctor.DescentData.pullHom_hom, pullHom_pullHom, pullHom_id, map_eq_pullHom_assoc, map_eq_pullHom

Theorems

NameKindAssumesProvesValidatesDepends On
map_eq_pullHom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.Iso.inv
CategoryTheory.Pseudofunctor.mapComp'
pullHom
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Cat.Hom₂.comp_app
CategoryTheory.Category.id_comp
map_eq_pullHom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.Iso.inv
CategoryTheory.Pseudofunctor.mapComp'
pullHom
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_eq_pullHom
pullHom_id 📖mathematicalpullHom
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_app
CategoryTheory.locallyDiscreteBicategory.strict
CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_app
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Cat.Hom₂.comp_app
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.id_comp
pullHom_pullHom 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
pullHomCategoryTheory.Functor.map_comp_assoc
CategoryTheory.locallyDiscreteBicategory.strict
CategoryTheory.Category.assoc
CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv_app
CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight_app_assoc
CategoryTheory.Pseudofunctor.mapComp'_inv_naturality_assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Cat.Hom₂.comp_app
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Cat.Hom₂.id_app
CategoryTheory.Category.id_comp

---

← Back to Index