Documentation Verification Report

IsStack

📁 Source: Mathlib/CategoryTheory/Sites/Descent/IsStack.lean

Statistics

MetricCount
DefinitionsIsStack
1
TheoremsessSurj_of_sieve, of_isStackFor, toIsPrestack, isEquivalence_toDescentData, isStackFor, isStackFor'
6
Total7

CategoryTheory.Pseudofunctor

Definitions

NameCategoryTheorems
IsStack 📖CompData
2 mathmath: IsStack.of_precoverage, IsStack.of_isStackFor

Theorems

NameKindAssumesProvesValidatesDepends On
isEquivalence_toDescentData 📖mathematicalCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.ofArrows
CategoryTheory.Functor.IsEquivalence
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
DescentData
DescentData.instCategory
toDescentData
isStackFor_ofArrows_iff
IsStackFor_generate_iff
isStackFor
CategoryTheory.Sieve.generate_sieve
isStackFor 📖mathematicalCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.generate
IsStackForisStackFor'
isStackFor' 📖mathematicalCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
IsStackFor
CategoryTheory.Sieve.arrows
isStackFor_iff
isPrestackFor'
IsStack.toIsPrestack
CategoryTheory.Functor.FullyFaithful.full
CategoryTheory.Functor.FullyFaithful.faithful
IsStack.essSurj_of_sieve

CategoryTheory.Pseudofunctor.IsStack

Theorems

NameKindAssumesProvesValidatesDepends On
essSurj_of_sieve 📖mathematicalCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Functor.EssSurj
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Pseudofunctor.DescentData
CategoryTheory.Presieve.category
CategoryTheory.Sieve.arrows
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma.hom
CategoryTheory.Cat.str
CategoryTheory.Pseudofunctor.DescentData.instCategory
CategoryTheory.Pseudofunctor.toDescentData
of_isStackFor 📖mathematicalCategoryTheory.Pseudofunctor.IsStackFor
CategoryTheory.Sieve.arrows
CategoryTheory.Pseudofunctor.IsStackCategoryTheory.Pseudofunctor.IsPrestack.of_isPrestackFor
CategoryTheory.Pseudofunctor.IsStackFor.isPrestackFor
CategoryTheory.Pseudofunctor.isStackFor_iff
CategoryTheory.Functor.IsEquivalence.essSurj
toIsPrestack 📖mathematicalCategoryTheory.Pseudofunctor.IsPrestack

---

← Back to Index