Documentation Verification Report

Precoverage

📁 Source: Mathlib/CategoryTheory/Sites/Descent/Precoverage.lean

Statistics

MetricCount
DefinitionsfullyFaithfulPullFunctor
1
Theoremsfaithful_pullFunctor, full_pullFunctor, isEquivalence_toDescentData_of_sieve_le, of_precoverage, of_precoverage, of_le, of_le'
7
Total8

CategoryTheory.Pseudofunctor.DescentData

Definitions

NameCategoryTheorems
fullyFaithfulPullFunctor 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
faithful_pullFunctor 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.ofArrows
CategoryTheory.Functor.Faithful
CategoryTheory.Pseudofunctor.DescentData
instCategory
pullFunctor
CategoryTheory.CategoryStruct.id
hom_ext
Equiv.injective
CategoryTheory.GrothendieckTopology.mem_over_iff
Equiv.apply_symm_apply
CategoryTheory.GrothendieckTopology.pullback_stable
CategoryTheory.Presieve.IsSeparatedFor.ext
CategoryTheory.Presieve.IsSheaf.isSeparated
CategoryTheory.isSheaf_iff_isSheaf_of_type
CategoryTheory.Pseudofunctor.IsPrestack.isSheaf
CategoryTheory.Category.comp_id
CategoryTheory.Over.w
CategoryTheory.Category.assoc
Hom.comm
CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_app
CategoryTheory.locallyDiscreteBicategory.strict
CategoryTheory.Cat.Hom.inv_hom_id_toNatTrans_app
CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_app_assoc
CategoryTheory.Cat.Hom.inv_hom_id_toNatTrans_app_assoc
CategoryTheory.Pseudofunctor.mapComp'_inv_naturality
CategoryTheory.Cat.Hom.hom_inv_id_toNatTrans_app_assoc
Mathlib.Tactic.Reassoc.eq_whisker'
hom_comp
hom_self
CategoryTheory.Over.OverMorphism.ext
CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.pullHom.congr_simp
full_pullFunctor 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.ofArrows
CategoryTheory.Functor.Full
CategoryTheory.Pseudofunctor.DescentData
instCategory
pullFunctor
CategoryTheory.CategoryStruct.id
hom_ext
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Category.comp_id
CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.pullHom_id
hom_self
isEquivalence_toDescentData_of_sieve_le 📖mathematicalCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.ofArrows
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Sieve.instCompleteLattice
CategoryTheory.Functor.IsEquivalence
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Pseudofunctor.DescentData
instCategory
CategoryTheory.Pseudofunctor.toDescentData
CategoryTheory.Category.comp_id
CategoryTheory.Functor.FullyFaithful.faithful
CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.Functor.FullyFaithful.full
CategoryTheory.Functor.IsEquivalence.essSurj

CategoryTheory.Pseudofunctor.IsPrestack

Theorems

NameKindAssumesProvesValidatesDepends On
of_precoverage 📖mathematicalCategoryTheory.Pseudofunctor.IsPrestackForCategoryTheory.Pseudofunctor.IsPrestack
CategoryTheory.Precoverage.toGrothendieck
CategoryTheory.isSheaf_iff_isSheaf_of_type
CategoryTheory.over_toGrothendieck_eq_toGrothendieck_comap_forget
CategoryTheory.Precoverage.instHasPullbacksOfHasPullbacks
CategoryTheory.Over.hasLimitsOfShape_of_isConnected
CategoryTheory.instIsConnectedWidePullbackShape
CategoryTheory.Precoverage.instHasIsosComap
CategoryTheory.Precoverage.instIsStableUnderBaseChangeComapOfPreservesLimitsOfShapeWalkingCospan
CategoryTheory.Over.preservesLimitsOfShape_forget_of_isConnected
CategoryTheory.Precoverage.instIsStableUnderCompositionComap
CategoryTheory.Precoverage.toGrothendieck_toPretopology_eq_toGrothendieck
CategoryTheory.Presieve.isSheaf_pretopology
Equiv.surjective
CategoryTheory.Presieve.isSheafFor_iff_generate
CategoryTheory.Pseudofunctor.IsPrestackFor.isSheafFor'
CategoryTheory.Sieve.overEquiv_generate
CategoryTheory.Presieve.functorPushforward_overForget
CategoryTheory.Sieve.generate_sieve

CategoryTheory.Pseudofunctor.IsStack

Theorems

NameKindAssumesProvesValidatesDepends On
of_precoverage 📖mathematicalCategoryTheory.Pseudofunctor.IsStackForCategoryTheory.Pseudofunctor.IsStack
CategoryTheory.Precoverage.toGrothendieck
CategoryTheory.Pseudofunctor.IsPrestack.of_precoverage
CategoryTheory.Pseudofunctor.IsStackFor.isPrestackFor
CategoryTheory.Pseudofunctor.IsStackFor.essSurj
CategoryTheory.Precoverage.toGrothendieck_toPretopology_eq_toGrothendieck
CategoryTheory.Pseudofunctor.IsStackFor.of_le
CategoryTheory.Precoverage.generate_mem_toGrothendieck

CategoryTheory.Pseudofunctor.IsStackFor

Theorems

NameKindAssumesProvesValidatesDepends On
of_le 📖CategoryTheory.Pseudofunctor.IsStackFor
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.generate
CategoryTheory.Presieve
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticePresieve
CategoryTheory.Presieve.exists_eq_ofArrows
CategoryTheory.Pseudofunctor.isStackFor_ofArrows_iff
CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_of_sieve_le
CategoryTheory.Sieve.generate_mono
of_le' 📖CategoryTheory.Pseudofunctor.IsStackFor
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Sieve.instCompleteLattice
of_le
CategoryTheory.Sieve.generate_sieve

---

← Back to Index