Documentation Verification Report

EqualizerSheafCondition

๐Ÿ“ Source: Mathlib/CategoryTheory/Sites/EqualizerSheafCondition.lean

Statistics

MetricCount
DefinitionsFirstObj, FirstObj, SecondObj, firstMap, forkMap, secondMap, SecondObj, firstMap, instInhabitedSecondObjBotPresieve, secondMap, SecondObj, firstMap, instInhabitedSecondObjBotSieve, secondMap, firstObjEqFamily, forkMap, instInhabitedFirstObjArrowsBotSieve, instInhabitedFirstObjBotPresieve
18
Theoremsext, ext_iff, ext, ext_iff, ext, ext_iff, compatible_iff, compatible_iff_of_small, sheaf_condition, w, compatible_iff, isSheafFor_singleton_iff, isSheafFor_singleton_iff_of_hasPullback, sheaf_condition, w, ext, ext_iff, compatible_iff, equalizer_sheaf_condition, w, firstObjEqFamily_hom, firstObjEqFamily_inv
22
Total40

CategoryTheory.Equalizer

Definitions

NameCategoryTheorems
FirstObj ๐Ÿ“–CompOp
8 mathmath: Sieve.equalizer_sheaf_condition, firstObjEqFamily_inv, firstObjEqFamily_hom, Sieve.w, Presieve.compatible_iff, Presieve.sheaf_condition, Presieve.w, Sieve.compatible_iff
firstObjEqFamily ๐Ÿ“–CompOp
4 mathmath: firstObjEqFamily_inv, firstObjEqFamily_hom, Presieve.compatible_iff, Sieve.compatible_iff
forkMap ๐Ÿ“–CompOp
4 mathmath: Sieve.equalizer_sheaf_condition, Sieve.w, Presieve.sheaf_condition, Presieve.w
instInhabitedFirstObjArrowsBotSieve ๐Ÿ“–CompOpโ€”
instInhabitedFirstObjBotPresieve ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
firstObjEqFamily_hom ๐Ÿ“–mathematicalโ€”CategoryTheory.Iso.hom
CategoryTheory.types
FirstObj
CategoryTheory.Presieve.FamilyOfElements
firstObjEqFamily
CategoryTheory.Limits.Pi.ฯ€
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
โ€”โ€”
firstObjEqFamily_inv ๐Ÿ“–mathematicalโ€”CategoryTheory.Iso.inv
CategoryTheory.types
FirstObj
CategoryTheory.Presieve.FamilyOfElements
firstObjEqFamily
CategoryTheory.Limits.Pi.lift
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
โ€”โ€”

CategoryTheory.Equalizer.FirstObj

Theorems

NameKindAssumesProvesValidatesDepends On
ext ๐Ÿ“–โ€”CategoryTheory.Limits.Pi.ฯ€
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
โ€”โ€”CategoryTheory.Limits.Types.limit_ext
ext_iff ๐Ÿ“–mathematicalโ€”CategoryTheory.Limits.Pi.ฯ€
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
โ€”ext

CategoryTheory.Equalizer.Presieve

Definitions

NameCategoryTheorems
SecondObj ๐Ÿ“–CompOp
2 mathmath: sheaf_condition, w
firstMap ๐Ÿ“–CompOp
3 mathmath: compatible_iff, sheaf_condition, w
instInhabitedSecondObjBotPresieve ๐Ÿ“–CompOpโ€”
secondMap ๐Ÿ“–CompOp
3 mathmath: compatible_iff, sheaf_condition, w

Theorems

NameKindAssumesProvesValidatesDepends On
compatible_iff ๐Ÿ“–mathematicalโ€”CategoryTheory.Presieve.FamilyOfElements.Compatible
CategoryTheory.Iso.hom
CategoryTheory.types
CategoryTheory.Equalizer.FirstObj
CategoryTheory.Presieve.FamilyOfElements
CategoryTheory.Equalizer.firstObjEqFamily
firstMap
secondMap
โ€”CategoryTheory.Presieve.pullbackCompatible_iff
CategoryTheory.Limits.Types.limit_ext
CategoryTheory.Limits.Types.pi_lift_ฯ€_apply
small_prod
small_sigma
UnivLE.small
univLE_of_max
UnivLE.self
small_subtype
CategoryTheory.instSmallHomOfLocallySmall
CategoryTheory.locallySmall_of_univLE
CategoryTheory.Presieve.HasPairwisePullbacks.has_pullbacks
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.Limits.Types.limit_ext_iff'
isSheafFor_singleton_iff ๐Ÿ“–mathematicalโ€”CategoryTheory.Presieve.IsSheafFor
CategoryTheory.Presieve.singleton
CategoryTheory.Limits.IsLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.types
CategoryTheory.Limits.parallelPair
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.PullbackCone.fst
CategoryTheory.Limits.PullbackCone.snd
CategoryTheory.Limits.Fork.ofฮน
โ€”CategoryTheory.Limits.PullbackCone.condition
CategoryTheory.Limits.PullbackCone.IsLimit.lift_fst
CategoryTheory.op_comp
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.Limits.PullbackCone.IsLimit.lift_snd
CategoryTheory.Limits.Types.type_equalizer_iff_unique
CategoryTheory.Presieve.isSheafFor_singleton
isSheafFor_singleton_iff_of_hasPullback ๐Ÿ“–mathematicalโ€”CategoryTheory.Presieve.IsSheafFor
CategoryTheory.Presieve.singleton
CategoryTheory.Limits.IsLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.types
CategoryTheory.Limits.parallelPair
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Limits.pullback
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.snd
CategoryTheory.Limits.Fork.ofฮน
โ€”isSheafFor_singleton_iff
sheaf_condition ๐Ÿ“–mathematicalโ€”CategoryTheory.Presieve.IsSheafFor
CategoryTheory.Limits.IsLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.types
CategoryTheory.Limits.parallelPair
CategoryTheory.Equalizer.FirstObj
SecondObj
firstMap
secondMap
CategoryTheory.Limits.Fork.ofฮน
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Equalizer.forkMap
w
โ€”w
CategoryTheory.Limits.Types.type_equalizer_iff_unique
Equiv.forall_congr_right
Equiv.apply_symm_apply
existsUnique_congr
Equiv.eq_symm_apply
CategoryTheory.Limits.Types.pi_lift_ฯ€_apply
small_sigma
UnivLE.small
univLE_of_max
UnivLE.self
small_subtype
CategoryTheory.instSmallHomOfLocallySmall
CategoryTheory.locallySmall_of_univLE
w ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Equalizer.FirstObj
SecondObj
CategoryTheory.Equalizer.forkMap
firstMap
secondMap
โ€”CategoryTheory.Limits.Pi.hom_ext
CategoryTheory.types_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.limit.lift_ฯ€
CategoryTheory.Limits.limit.lift_ฯ€_assoc
CategoryTheory.Functor.map_comp
CategoryTheory.op_comp
CategoryTheory.Limits.pullback.condition
CategoryTheory.FunctorToTypes.map_comp_apply

CategoryTheory.Equalizer.Presieve.Arrows

Definitions

NameCategoryTheorems
FirstObj ๐Ÿ“–CompOp
3 mathmath: sheaf_condition, CategoryTheory.Presieve.piComparison_fac, w
SecondObj ๐Ÿ“–CompOp
2 mathmath: sheaf_condition, w
firstMap ๐Ÿ“–CompOp
5 mathmath: CategoryTheory.Presieve.firstMap_eq_secondMap, compatible_iff, sheaf_condition, compatible_iff_of_small, w
forkMap ๐Ÿ“–CompOp
3 mathmath: sheaf_condition, CategoryTheory.Presieve.piComparison_fac, w
secondMap ๐Ÿ“–CompOp
5 mathmath: CategoryTheory.Presieve.firstMap_eq_secondMap, compatible_iff, sheaf_condition, compatible_iff_of_small, w

Theorems

NameKindAssumesProvesValidatesDepends On
compatible_iff ๐Ÿ“–mathematicalโ€”CategoryTheory.Presieve.Arrows.Compatible
CategoryTheory.Iso.hom
CategoryTheory.types
CategoryTheory.Limits.piObj
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Discrete.functor
CategoryTheory.Limits.Types.productIso
firstMap
secondMap
โ€”UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.instSmallDiscrete
univLE_of_max
CategoryTheory.Presieve.Arrows.pullbackCompatible_iff
SecondObj.ext
CategoryTheory.Limits.Types.pi_lift_ฯ€_apply
small_prod
CategoryTheory.Presieve.instHasPullbackOfHasPairwisePullbacksOfArrows
CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply
compatible_iff_of_small ๐Ÿ“–mathematicalโ€”CategoryTheory.Presieve.Arrows.Compatible
DFunLike.coe
Equiv
Shrink
small_Pi
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
UnivLE.small
UnivLE.self
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
CategoryTheory.Iso.hom
CategoryTheory.Limits.piObj
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.instSmallDiscrete
CategoryTheory.Discrete.functor
CategoryTheory.Limits.Types.Small.productIso
firstMap
secondMap
โ€”small_Pi
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.instSmallDiscrete
CategoryTheory.Presieve.Arrows.pullbackCompatible_iff
SecondObj.ext
CategoryTheory.Limits.Types.pi_lift_ฯ€_apply
small_prod
CategoryTheory.Presieve.instHasPullbackOfHasPairwisePullbacksOfArrows
CategoryTheory.Limits.Types.Small.productIso_hom_comp_eval_apply
sheaf_condition ๐Ÿ“–mathematicalโ€”CategoryTheory.Presieve.IsSheafFor
CategoryTheory.Presieve.ofArrows
CategoryTheory.Limits.IsLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.types
CategoryTheory.Limits.parallelPair
FirstObj
SecondObj
firstMap
secondMap
CategoryTheory.Limits.Fork.ofฮน
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
forkMap
w
โ€”w
CategoryTheory.Limits.Types.type_equalizer_iff_unique
CategoryTheory.Presieve.isSheafFor_arrows_iff
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.instSmallDiscrete
small_Pi
UnivLE.small
UnivLE.self
Equiv.forall_congr_right
Equiv.apply_symm_apply
Equiv.symm_apply_apply
existsUnique_congr
Equiv.eq_symm_apply
Equiv.symm_apply_eq
CategoryTheory.Limits.Types.Small.productIso_hom_comp_eval_apply
CategoryTheory.Limits.Types.pi_lift_ฯ€_apply
w ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
FirstObj
SecondObj
forkMap
firstMap
secondMap
โ€”CategoryTheory.types_ext
SecondObj.ext
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.instSmallDiscrete
small_prod
CategoryTheory.Limits.Types.pi_lift_ฯ€_apply
CategoryTheory.Limits.pullback.condition

CategoryTheory.Equalizer.Presieve.Arrows.FirstObj

Theorems

NameKindAssumesProvesValidatesDepends On
ext ๐Ÿ“–โ€”CategoryTheory.Limits.Pi.ฯ€
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
โ€”โ€”CategoryTheory.Limits.Types.limit_ext
ext_iff ๐Ÿ“–mathematicalโ€”CategoryTheory.Limits.Pi.ฯ€
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
โ€”ext

CategoryTheory.Equalizer.Presieve.Arrows.SecondObj

Theorems

NameKindAssumesProvesValidatesDepends On
ext ๐Ÿ“–โ€”CategoryTheory.Limits.Pi.ฯ€
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Limits.pullback
โ€”โ€”CategoryTheory.Limits.Types.limit_ext
ext_iff ๐Ÿ“–mathematicalโ€”CategoryTheory.Limits.Pi.ฯ€
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Limits.pullback
โ€”ext

CategoryTheory.Equalizer.Sieve

Definitions

NameCategoryTheorems
SecondObj ๐Ÿ“–CompOp
2 mathmath: equalizer_sheaf_condition, w
firstMap ๐Ÿ“–CompOp
3 mathmath: equalizer_sheaf_condition, w, compatible_iff
instInhabitedSecondObjBotSieve ๐Ÿ“–CompOpโ€”
secondMap ๐Ÿ“–CompOp
3 mathmath: equalizer_sheaf_condition, w, compatible_iff

Theorems

NameKindAssumesProvesValidatesDepends On
compatible_iff ๐Ÿ“–mathematicalโ€”CategoryTheory.Presieve.FamilyOfElements.Compatible
CategoryTheory.Sieve.arrows
CategoryTheory.Iso.hom
CategoryTheory.types
CategoryTheory.Equalizer.FirstObj
CategoryTheory.Presieve.FamilyOfElements
CategoryTheory.Equalizer.firstObjEqFamily
firstMap
secondMap
โ€”CategoryTheory.Presieve.compatible_iff_sieveCompatible
SecondObj.ext
CategoryTheory.Limits.Types.pi_lift_ฯ€_apply
small_sigma
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.instSmallHomOfLocallySmall
CategoryTheory.locallySmall_of_univLE
small_subtype
CategoryTheory.Sieve.downward_closed
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.Limits.Types.limit_ext_iff'
equalizer_sheaf_condition ๐Ÿ“–mathematicalโ€”CategoryTheory.Presieve.IsSheafFor
CategoryTheory.Sieve.arrows
CategoryTheory.Limits.IsLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.types
CategoryTheory.Limits.parallelPair
CategoryTheory.Equalizer.FirstObj
SecondObj
firstMap
secondMap
CategoryTheory.Limits.Fork.ofฮน
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Equalizer.forkMap
w
โ€”w
CategoryTheory.Limits.Types.type_equalizer_iff_unique
Equiv.forall_congr_right
CategoryTheory.inv_hom_id_apply
existsUnique_congr
CategoryTheory.Iso.toEquiv_symm_fun
Equiv.eq_symm_apply
CategoryTheory.Limits.Types.pi_lift_ฯ€_apply
small_sigma
UnivLE.small
univLE_of_max
UnivLE.self
small_subtype
CategoryTheory.instSmallHomOfLocallySmall
CategoryTheory.locallySmall_of_univLE
w ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Equalizer.FirstObj
CategoryTheory.Sieve.arrows
SecondObj
CategoryTheory.Equalizer.forkMap
firstMap
secondMap
โ€”CategoryTheory.types_ext
SecondObj.ext
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.instSmallDiscrete
small_sigma
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.instSmallHomOfLocallySmall
CategoryTheory.locallySmall_of_univLE
small_subtype
CategoryTheory.Limits.Types.pi_lift_ฯ€_apply
CategoryTheory.FunctorToTypes.map_comp_apply

CategoryTheory.Equalizer.Sieve.SecondObj

Theorems

NameKindAssumesProvesValidatesDepends On
ext ๐Ÿ“–โ€”CategoryTheory.Limits.Pi.ฯ€
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sieve.arrows
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
โ€”โ€”CategoryTheory.Limits.Types.limit_ext
ext_iff ๐Ÿ“–mathematicalโ€”CategoryTheory.Limits.Pi.ฯ€
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sieve.arrows
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
โ€”ext

---

โ† Back to Index