Documentation Verification Report

Equivalence

📁 Source: Mathlib/CategoryTheory/Sites/Equivalence.lean

Statistics

MetricCount
DefinitionssheafCongr, counitIso, functor, inverse, unitIso, transportAndSheafify, transportIsoSheafToPresheaf, transportSheafificationAdjunction, smallSheafificationAdjunction, smallSheafify
10
Theoremseq_inducedTopology_of_isDenseSubsite, hasSheafCompose, hasSheafify, instIsCoverDenseOfIsEquivalence, instIsDenseSubsiteFunctor, instIsDenseSubsiteInducedTopologyInverseFunctor, instPreservesFiniteLimitsFunctorOppositeSheafTransportAndSheafify, isDenseSubsite_functor_of_isCocontinuous, isDenseSubsite_inverse_of_isCocontinuous, counitIso_hom_app_val_app, counitIso_inv_app_val_app, functor_map_val_app, functor_obj_val_map, functor_obj_val_obj, inverse_map_val_app, inverse_obj_val_map, inverse_obj_val_obj, unitIso_hom_app_val_app, unitIso_inv_app_val_app, sheafCongr_counitIso, sheafCongr_functor, sheafCongr_inverse, sheafCongr_unitIso, transport, ofEssentiallySmall, transport, W_inverseImage_whiskeringLeft, W_whiskerLeft_iff, instPreservesSheafification_1, hasColimitsEssentiallySmallSite, hasLimitsEssentiallySmallSite, hasSheafComposeEssentiallySmallSite, hasSheafifyEssentiallySmallSite
33
Total43

CategoryTheory

Definitions

NameCategoryTheorems
smallSheafificationAdjunction 📖CompOp
smallSheafify 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
hasColimitsEssentiallySmallSite 📖mathematicalLimits.HasColimitsOfSize
Sheaf
Sheaf.instCategorySheaf
Functor.locallyCoverDense_of_isCoverDense
Functor.IsLocallyFull.of_full
Equivalence.full_inverse
Equivalence.instIsCoverDenseOfIsEquivalence
Equivalence.isEquivalence_inverse
Functor.IsLocallyFaithful.of_faithful
Equivalence.faithful_inverse
Adjunction.has_colimits_of_equivalence
Functor.instIsDenseSubsiteInducedTopologyOfIsCoverDense
Equivalence.isEquivalence_functor
hasLimitsEssentiallySmallSite 📖mathematicalLimits.HasLimitsOfSize
Sheaf
Sheaf.instCategorySheaf
Functor.locallyCoverDense_of_isCoverDense
Functor.IsLocallyFull.of_full
Equivalence.full_inverse
Equivalence.instIsCoverDenseOfIsEquivalence
Equivalence.isEquivalence_inverse
Functor.IsLocallyFaithful.of_faithful
Equivalence.faithful_inverse
Adjunction.has_limits_of_equivalence
Functor.instIsDenseSubsiteInducedTopologyOfIsCoverDense
Equivalence.isEquivalence_functor
hasSheafComposeEssentiallySmallSite 📖mathematicalGrothendieckTopology.HasSheafComposeFunctor.locallyCoverDense_of_isCoverDense
Functor.IsLocallyFull.of_full
Equivalence.full_inverse
Equivalence.instIsCoverDenseOfIsEquivalence
Equivalence.isEquivalence_inverse
Functor.IsLocallyFaithful.of_faithful
Equivalence.faithful_inverse
Equivalence.hasSheafCompose
Functor.instIsDenseSubsiteInducedTopologyOfIsCoverDense
hasSheafifyEssentiallySmallSite 📖mathematicalHasSheafifyFunctor.locallyCoverDense_of_isCoverDense
Functor.IsLocallyFull.of_full
Equivalence.full_inverse
Equivalence.instIsCoverDenseOfIsEquivalence
Equivalence.isEquivalence_inverse
Functor.IsLocallyFaithful.of_faithful
Equivalence.faithful_inverse
Equivalence.hasSheafify
Functor.instIsDenseSubsiteInducedTopologyOfIsCoverDense

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
sheafCongr 📖CompOp
4 mathmath: sheafCongr_functor, sheafCongr_counitIso, sheafCongr_inverse, sheafCongr_unitIso
transportAndSheafify 📖CompOp
1 mathmath: instPreservesFiniteLimitsFunctorOppositeSheafTransportAndSheafify
transportIsoSheafToPresheaf 📖CompOp
transportSheafificationAdjunction 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
eq_inducedTopology_of_isDenseSubsite 📖mathematicalCategoryTheory.Functor.inducedTopology
inverse
CategoryTheory.Functor.locallyCoverDense_of_isCoverDense
CategoryTheory.Functor.IsLocallyFull.of_full
full_inverse
instIsCoverDenseOfIsEquivalence
isEquivalence_inverse
CategoryTheory.Functor.IsLocallyFaithful.of_faithful
faithful_inverse
CategoryTheory.GrothendieckTopology.ext
CategoryTheory.Functor.locallyCoverDense_of_isCoverDense
CategoryTheory.Functor.IsLocallyFull.of_full
full_inverse
instIsCoverDenseOfIsEquivalence
isEquivalence_inverse
CategoryTheory.Functor.IsLocallyFaithful.of_faithful
faithful_inverse
Set.ext
CategoryTheory.Functor.functorPushforward_mem_iff
hasSheafCompose 📖mathematicalCategoryTheory.GrothendieckTopology.HasSheafComposeCategoryTheory.GrothendieckTopology.HasSheafCompose.isSheaf
CategoryTheory.Functor.op_comp_isSheaf
CategoryTheory.Functor.IsDenseSubsite.instIsContinuous
instIsDenseSubsiteFunctor
CategoryTheory.Presheaf.isSheaf_of_iso_iff
hasSheafify 📖mathematicalCategoryTheory.HasSheafifyCategoryTheory.HasSheafify.mk'
instPreservesFiniteLimitsFunctorOppositeSheafTransportAndSheafify
instIsCoverDenseOfIsEquivalence 📖mathematicalCategoryTheory.Functor.IsCoverDenseCategoryTheory.Sieve.ext
CategoryTheory.Presieve.in_coverByImage
CategoryTheory.Sieve.downward_closed
CategoryTheory.Iso.hom_inv_id_app_assoc
CategoryTheory.GrothendieckTopology.top_mem
instIsDenseSubsiteFunctor 📖mathematicalCategoryTheory.Functor.IsDenseSubsite
functor
CategoryTheory.Functor.locallyCoverDense_of_isCoverDense
CategoryTheory.Functor.IsLocallyFull.of_full
full_inverse
instIsCoverDenseOfIsEquivalence
isEquivalence_inverse
CategoryTheory.Functor.IsLocallyFaithful.of_faithful
faithful_inverse
eq_inducedTopology_of_isDenseSubsite
instIsDenseSubsiteInducedTopologyInverseFunctor
instIsDenseSubsiteInducedTopologyInverseFunctor 📖mathematicalCategoryTheory.Functor.IsDenseSubsite
CategoryTheory.Functor.inducedTopology
inverse
CategoryTheory.Functor.locallyCoverDense_of_isCoverDense
CategoryTheory.Functor.IsLocallyFull.of_full
full_inverse
instIsCoverDenseOfIsEquivalence
isEquivalence_inverse
CategoryTheory.Functor.IsLocallyFaithful.of_faithful
faithful_inverse
functor
CategoryTheory.Functor.locallyCoverDense_of_isCoverDense
CategoryTheory.Functor.IsLocallyFull.of_full
full_inverse
instIsCoverDenseOfIsEquivalence
isEquivalence_inverse
CategoryTheory.Functor.IsLocallyFaithful.of_faithful
faithful_inverse
full_functor
isEquivalence_functor
faithful_functor
CategoryTheory.GrothendieckTopology.ext
Set.ext
CategoryTheory.GrothendieckTopology.pullback_mem_iff_of_isIso
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.Sieve.ext
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
functor_unit_comp
CategoryTheory.Category.comp_id
inv_fun_map
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.NatIso.inv_app_isIso
CategoryTheory.Functor.instIsDenseSubsiteInducedTopologyOfIsCoverDense
instPreservesFiniteLimitsFunctorOppositeSheafTransportAndSheafify 📖mathematicalCategoryTheory.Limits.PreservesFiniteLimits
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
transportAndSheafify
CategoryTheory.Limits.comp_preservesLimitsOfShape
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.Functor.instPreservesLimitsOfSizeOfIsRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
isEquivalence_functor
CategoryTheory.instPreservesFiniteLimitsFunctorOppositeSheafPresheafToSheaf
isEquivalence_inverse
isDenseSubsite_functor_of_isCocontinuous 📖mathematicalCategoryTheory.Functor.IsDenseSubsite
functor
instIsCoverDenseOfIsEquivalence
isEquivalence_functor
CategoryTheory.Functor.IsLocallyFull.of_full
full_functor
CategoryTheory.Functor.IsLocallyFaithful.of_faithful
faithful_functor
CategoryTheory.GrothendieckTopology.superset_covering
GaloisCoinsertion.u_l_eq
le_refl
CategoryTheory.Functor.cover_lift
CategoryTheory.Functor.map_comp
fun_inv_map
CategoryTheory.Category.assoc
counitInv_functor_comp
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_app_assoc
CategoryTheory.GrothendieckTopology.pullback_stable
isDenseSubsite_inverse_of_isCocontinuous 📖mathematicalCategoryTheory.Functor.IsDenseSubsite
inverse
isDenseSubsite_functor_of_isCocontinuous
sheafCongr_counitIso 📖mathematicalcounitIso
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafCongr
sheafCongr.counitIso
sheafCongr_functor 📖mathematicalfunctor
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafCongr
sheafCongr.functor
sheafCongr_inverse 📖mathematicalinverse
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafCongr
sheafCongr.inverse
sheafCongr_unitIso 📖mathematicalunitIso
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafCongr
sheafCongr.unitIso

CategoryTheory.Equivalence.sheafCongr

Definitions

NameCategoryTheorems
counitIso 📖CompOp
3 mathmath: counitIso_hom_app_val_app, CategoryTheory.Equivalence.sheafCongr_counitIso, counitIso_inv_app_val_app
functor 📖CompOp
16 mathmath: CategoryTheory.Equivalence.sheafCongrPrecoherent_counitIso_hom_app_val_app, counitIso_hom_app_val_app, CategoryTheory.Equivalence.sheafCongrPreregular_counitIso_inv_app_val_app, CategoryTheory.Equivalence.sheafCongr_functor, CategoryTheory.Equivalence.sheafCongrPreregular_unitIso_hom_app_val_app, unitIso_hom_app_val_app, CategoryTheory.Equivalence.sheafCongrPreregular_counitIso_hom_app_val_app, CategoryTheory.Equivalence.sheafCongrPrecoherent_counitIso_inv_app_val_app, functor_map_val_app, functor_obj_val_map, CategoryTheory.Equivalence.sheafCongrPrecoherent_unitIso_inv_app_val_app, CategoryTheory.Equivalence.sheafCongrPrecoherent_unitIso_hom_app_val_app, functor_obj_val_obj, CategoryTheory.Equivalence.sheafCongrPreregular_unitIso_inv_app_val_app, unitIso_inv_app_val_app, counitIso_inv_app_val_app
inverse 📖CompOp
16 mathmath: CategoryTheory.Equivalence.sheafCongrPrecoherent_counitIso_hom_app_val_app, counitIso_hom_app_val_app, CategoryTheory.Equivalence.sheafCongrPreregular_counitIso_inv_app_val_app, CategoryTheory.Equivalence.sheafCongrPreregular_unitIso_hom_app_val_app, inverse_obj_val_obj, unitIso_hom_app_val_app, CategoryTheory.Equivalence.sheafCongrPreregular_counitIso_hom_app_val_app, CategoryTheory.Equivalence.sheafCongrPrecoherent_counitIso_inv_app_val_app, CategoryTheory.Equivalence.sheafCongrPrecoherent_unitIso_inv_app_val_app, CategoryTheory.Equivalence.sheafCongrPrecoherent_unitIso_hom_app_val_app, inverse_obj_val_map, CategoryTheory.Equivalence.sheafCongr_inverse, inverse_map_val_app, CategoryTheory.Equivalence.sheafCongrPreregular_unitIso_inv_app_val_app, unitIso_inv_app_val_app, counitIso_inv_app_val_app
unitIso 📖CompOp
3 mathmath: unitIso_hom_app_val_app, unitIso_inv_app_val_app, CategoryTheory.Equivalence.sheafCongr_unitIso

Theorems

NameKindAssumesProvesValidatesDepends On
counitIso_hom_app_val_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.op
CategoryTheory.Equivalence.functor
CategoryTheory.Sheaf.val
CategoryTheory.Functor.id
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
inverse
functor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
CategoryTheory.Functor.map
Opposite.op
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
counitIso_inv_app_val_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Sheaf.val
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.op
CategoryTheory.Equivalence.functor
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
inverse
functor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
CategoryTheory.Functor.map
Opposite.op
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.counitIso
functor_map_val_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Equivalence.inverse
CategoryTheory.Sheaf.val
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Functor.map
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
functor
Opposite.op
CategoryTheory.Functor.obj
Opposite.unop
functor_obj_val_map 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
functor
Opposite.op
CategoryTheory.Equivalence.inverse
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom.unop
functor_obj_val_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
functor
Opposite.op
CategoryTheory.Equivalence.inverse
Opposite.unop
inverse_map_val_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Equivalence.functor
CategoryTheory.Sheaf.val
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Functor.map
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
inverse
Opposite.op
CategoryTheory.Functor.obj
Opposite.unop
inverse_obj_val_map 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
inverse
Opposite.op
CategoryTheory.Equivalence.functor
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom.unop
inverse_obj_val_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
inverse
Opposite.op
CategoryTheory.Equivalence.functor
Opposite.unop
unitIso_hom_app_val_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Sheaf.val
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.op
CategoryTheory.Equivalence.inverse
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
functor
inverse
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
CategoryTheory.Functor.map
Opposite.op
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.unitIso
unitIso_inv_app_val_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.op
CategoryTheory.Equivalence.inverse
CategoryTheory.Sheaf.val
CategoryTheory.Functor.id
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
functor
inverse
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
CategoryTheory.Functor.map
Opposite.op
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.unitIso

CategoryTheory.GrothendieckTopology

Theorems

NameKindAssumesProvesValidatesDepends On
W_inverseImage_whiskeringLeft 📖mathematicalCategoryTheory.MorphismProperty.inverseImage
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
W
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.op
CategoryTheory.MorphismProperty.ext
W_eq_isLocal_range_sheafToPresheaf_obj
CategoryTheory.ObjectProperty.isoClosure_isLocal
Function.Bijective.of_comp_iff
CategoryTheory.Functor.whiskerLeft_obj_map_bijective_of_isCoverDense
CategoryTheory.Functor.IsLocallyFull.of_full
CategoryTheory.Sheaf.cond
Function.Bijective.of_comp_iff'
CategoryTheory.MorphismProperty.inverseImage_iff
W_whiskerLeft_iff 📖mathematicalW
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Functor.whiskerLeft
W_inverseImage_whiskeringLeft
instPreservesSheafification_1 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.StructuredArrow
Opposite
CategoryTheory.SmallModel
CategoryTheory.Category.opposite
CategoryTheory.smallCategorySmallModel
CategoryTheory.Functor.op
CategoryTheory.Equivalence.inverse
CategoryTheory.equivSmallModel
CategoryTheory.instCategoryStructuredArrow
PreservesSheafificationCategoryTheory.Functor.locallyCoverDense_of_isCoverDense
CategoryTheory.Functor.IsLocallyFull.of_full
CategoryTheory.Equivalence.full_inverse
CategoryTheory.Equivalence.instIsCoverDenseOfIsEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Functor.IsLocallyFaithful.of_faithful
CategoryTheory.Equivalence.faithful_inverse
PreservesSheafification.transport
CategoryTheory.Functor.IsDenseSubsite.instIsContinuous
CategoryTheory.Functor.instIsDenseSubsiteInducedTopologyOfIsCoverDense
CategoryTheory.Functor.IsEquivalence.essSurj
CategoryTheory.Functor.IsDenseSubsite.instIsEquivalenceSheafSheafPushforwardContinuous

CategoryTheory.GrothendieckTopology.PreservesSheafification

Theorems

NameKindAssumesProvesValidatesDepends On
transport 📖mathematicalCategoryTheory.GrothendieckTopology.PreservesSheafificationCategoryTheory.GrothendieckTopology.W_of_preservesSheafification
CategoryTheory.GrothendieckTopology.W_whiskerLeft_iff
CategoryTheory.MorphismProperty.of_postcomp
CategoryTheory.MorphismProperty.instHasOfPostcompPropertyIsomorphismsOfRespectsIso
CategoryTheory.ObjectProperty.instRespectsIsoIsLocal
CategoryTheory.Iso.isIso_inv
CategoryTheory.MorphismProperty.of_precomp
CategoryTheory.MorphismProperty.instHasOfPrecompPropertyIsomorphismsOfRespectsIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Functor.whiskerRight_left

CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective

Theorems

NameKindAssumesProvesValidatesDepends On
ofEssentiallySmall 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.StructuredArrow
Opposite
CategoryTheory.SmallModel
CategoryTheory.Category.opposite
CategoryTheory.smallCategorySmallModel
CategoryTheory.Functor.op
CategoryTheory.Equivalence.inverse
CategoryTheory.equivSmallModel
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijectiveCategoryTheory.Functor.locallyCoverDense_of_isCoverDense
CategoryTheory.Functor.IsLocallyFull.of_full
CategoryTheory.Equivalence.full_inverse
CategoryTheory.Equivalence.instIsCoverDenseOfIsEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Functor.IsLocallyFaithful.of_faithful
CategoryTheory.Equivalence.faithful_inverse
transport
CategoryTheory.Functor.IsDenseSubsite.instIsContinuous
CategoryTheory.Functor.instIsDenseSubsiteInducedTopologyOfIsCoverDense
CategoryTheory.Functor.IsEquivalence.essSurj
CategoryTheory.Functor.IsDenseSubsite.instIsEquivalenceSheafSheafPushforwardContinuous
CategoryTheory.Functor.inducedTopology_isCocontinuous
CategoryTheory.Functor.IsDenseSubsite.coverPreserving
transport 📖mathematicalCategoryTheory.CoverPreservingCategoryTheory.GrothendieckTopology.WEqualsLocallyBijectiveCategoryTheory.GrothendieckTopology.W_whiskerLeft_iff
CategoryTheory.Presheaf.isLocallyInjective_whisker_iff
CategoryTheory.Presheaf.isLocallySurjective_whisker_iff
CategoryTheory.GrothendieckTopology.W_iff_isLocallyBijective

---

← Back to Index