Documentation Verification Report

GlobalSections

📁 Source: Mathlib/CategoryTheory/Sites/GlobalSections.lean

Statistics

MetricCount
DefinitionsHasGlobalSectionsFunctor, coneΓ, isLimitConeΓ, natTransΓRes, Γ, ΓHomEquiv, ΓNatIsoCoyoneda, ΓNatIsoLim, ΓNatIsoSectionsFunctor, ΓNatIsoSheafSections, ΓObjEquivHom, ΓObjEquivSections, ΓRes, constantSheafΓAdj
14
TheoremsconeΓ_pt, coneΓ_π_app, natTransΓRes_app, ΓHomEquiv_naturality_left, ΓHomEquiv_naturality_left_symm, ΓHomEquiv_naturality_right, ΓHomEquiv_naturality_right_symm, ΓObjEquivHom_naturality, ΓObjEquivHom_naturality_symm, ΓObjEquivSections_naturality, ΓObjEquivSections_naturality_symm, ΓRes_map, ΓRes_map_assoc, ΓRes_naturality, hasGlobalSectionsFunctor_of_hasLimitsOfShape, hasGlobalSectionsFunctor_of_hasTerminal, instIsRightAdjointSheafΓ
17
Total31

CategoryTheory

Definitions

NameCategoryTheorems
HasGlobalSectionsFunctor 📖MathDef
2 mathmath: hasGlobalSectionsFunctor_of_hasLimitsOfShape, hasGlobalSectionsFunctor_of_hasTerminal
constantSheafΓAdj 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
hasGlobalSectionsFunctor_of_hasLimitsOfShape 📖mathematicalHasGlobalSectionsFunctor
hasGlobalSectionsFunctor_of_hasTerminal 📖mathematicalHasGlobalSectionsFunctor
instIsRightAdjointSheafΓ 📖mathematicalFunctor.IsRightAdjoint
Sheaf
Sheaf.instCategorySheaf
Sheaf.Γ
Adjunction.instIsRightAdjointRightAdjoint

CategoryTheory.Sheaf

Definitions

NameCategoryTheorems
coneΓ 📖CompOp
2 mathmath: coneΓ_pt, coneΓ_π_app
isLimitConeΓ 📖CompOp
natTransΓRes 📖CompOp
1 mathmath: natTransΓRes_app
Γ 📖CompOp
14 mathmath: ΓHomEquiv_naturality_left_symm, ΓHomEquiv_naturality_left, natTransΓRes_app, CategoryTheory.instIsRightAdjointSheafΓ, ΓObjEquivSections_naturality_symm, ΓRes_map_assoc, ΓObjEquivHom_naturality_symm, coneΓ_pt, ΓHomEquiv_naturality_right_symm, ΓObjEquivHom_naturality, ΓRes_map, ΓHomEquiv_naturality_right, ΓObjEquivSections_naturality, ΓRes_naturality
ΓHomEquiv 📖CompOp
4 mathmath: ΓHomEquiv_naturality_left_symm, ΓHomEquiv_naturality_left, ΓHomEquiv_naturality_right_symm, ΓHomEquiv_naturality_right
ΓNatIsoCoyoneda 📖CompOp
ΓNatIsoLim 📖CompOp
ΓNatIsoSectionsFunctor 📖CompOp
ΓNatIsoSheafSections 📖CompOp
ΓObjEquivHom 📖CompOp
2 mathmath: ΓObjEquivHom_naturality_symm, ΓObjEquivHom_naturality
ΓObjEquivSections 📖CompOp
2 mathmath: ΓObjEquivSections_naturality_symm, ΓObjEquivSections_naturality
ΓRes 📖CompOp
5 mathmath: natTransΓRes_app, ΓRes_map_assoc, coneΓ_π_app, ΓRes_map, ΓRes_naturality

Theorems

NameKindAssumesProvesValidatesDepends On
coneΓ_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
Opposite
CategoryTheory.Category.opposite
val
coneΓ
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
instCategorySheaf
Γ
coneΓ_π_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
val
coneΓ
CategoryTheory.Limits.Cone.π
ΓRes
natTransΓRes_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Sheaf
instCategorySheaf
Γ
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.sheafSections
natTransΓRes
ΓRes
ΓHomEquiv_naturality_left 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
val
CategoryTheory.Sheaf
instCategorySheaf
Γ
EquivLike.toFunLike
Equiv.instEquivLike
ΓHomEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Adjunction.homEquiv_naturality_left_symm
CategoryTheory.Adjunction.homEquiv_naturality_left
ΓHomEquiv_naturality_left_symm 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
instCategorySheaf
Γ
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.const
val
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
ΓHomEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Adjunction.homEquiv_naturality_left_symm
CategoryTheory.Adjunction.homEquiv_naturality_left
ΓHomEquiv_naturality_right 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
val
CategoryTheory.Sheaf
instCategorySheaf
Γ
EquivLike.toFunLike
Equiv.instEquivLike
ΓHomEquiv
CategoryTheory.CategoryStruct.comp
Hom.val
CategoryTheory.Functor.map
CategoryTheory.Adjunction.homEquiv_naturality_right_symm
CategoryTheory.Adjunction.homEquiv_naturality_right
ΓHomEquiv_naturality_right_symm 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
instCategorySheaf
Γ
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.const
val
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
ΓHomEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
Hom.val
CategoryTheory.Adjunction.homEquiv_naturality_right_symm
CategoryTheory.Adjunction.homEquiv_naturality_right
ΓObjEquivHom_naturality 📖mathematicalDFunLike.coe
Equiv
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
CategoryTheory.types
instCategorySheaf
Γ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.constantSheaf
EquivLike.toFunLike
Equiv.instEquivLike
ΓObjEquivHom
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Adjunction.homEquiv_naturality_right_symm
ΓObjEquivHom_naturality_symm 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategorySheaf
CategoryTheory.Functor.obj
CategoryTheory.constantSheaf
Γ
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
ΓObjEquivHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Adjunction.homEquiv_naturality_right
ΓObjEquivSections_naturality 📖mathematicalDFunLike.coe
Equiv
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
CategoryTheory.types
instCategorySheaf
Γ
Set.Elem
CategoryTheory.Functor.sections
Opposite
CategoryTheory.Category.opposite
val
EquivLike.toFunLike
Equiv.instEquivLike
ΓObjEquivSections
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.sectionsFunctor
Hom.val
ΓHomEquiv_naturality_right_symm
CategoryTheory.Functor.sectionsEquivHom_naturality_symm
ΓObjEquivSections_naturality_symm 📖mathematicalDFunLike.coe
Equiv
Set.Elem
CategoryTheory.Functor.sections
Opposite
CategoryTheory.Category.opposite
val
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
instCategorySheaf
Γ
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
ΓObjEquivSections
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.sectionsFunctor
Hom.val
ΓHomEquiv_naturality_right
ΓRes_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
instCategorySheaf
Γ
Opposite
CategoryTheory.Category.opposite
val
ΓRes
CategoryTheory.Functor.map
CategoryTheory.Limits.Cone.w
ΓRes_map_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
instCategorySheaf
Γ
Opposite
CategoryTheory.Category.opposite
val
ΓRes
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ΓRes_map
ΓRes_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
instCategorySheaf
Γ
Opposite
CategoryTheory.Category.opposite
val
CategoryTheory.Functor.map
ΓRes
CategoryTheory.NatTrans.app
Hom.val
CategoryTheory.congr_app
ΓHomEquiv_naturality_left_symm
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
ΓHomEquiv_naturality_right_symm

---

← Back to Index