| Name | Category | Theorems |
coneΓ 📖 | CompOp | 2 mathmath: coneΓ_pt, coneΓ_π_app
|
isLimitConeΓ 📖 | CompOp | — |
natTransΓRes 📖 | CompOp | 1 mathmath: natTransΓRes_app
|
Γ 📖 | CompOp | 14 mathmath: ΓHomEquiv_naturality_left_symm, ΓHomEquiv_naturality_left, natTransΓRes_app, CategoryTheory.instIsRightAdjointSheafΓ, ΓObjEquivSections_naturality_symm, ΓRes_map_assoc, ΓObjEquivHom_naturality_symm, coneΓ_pt, ΓHomEquiv_naturality_right_symm, ΓObjEquivHom_naturality, ΓRes_map, ΓHomEquiv_naturality_right, ΓObjEquivSections_naturality, ΓRes_naturality
|
ΓHomEquiv 📖 | CompOp | 4 mathmath: ΓHomEquiv_naturality_left_symm, ΓHomEquiv_naturality_left, ΓHomEquiv_naturality_right_symm, ΓHomEquiv_naturality_right
|
ΓNatIsoCoyoneda 📖 | CompOp | — |
ΓNatIsoLim 📖 | CompOp | — |
ΓNatIsoSectionsFunctor 📖 | CompOp | — |
ΓNatIsoSheafSections 📖 | CompOp | — |
ΓObjEquivHom 📖 | CompOp | 2 mathmath: ΓObjEquivHom_naturality_symm, ΓObjEquivHom_naturality
|
ΓObjEquivSections 📖 | CompOp | 2 mathmath: ΓObjEquivSections_naturality_symm, ΓObjEquivSections_naturality
|
ΓRes 📖 | CompOp | 5 mathmath: natTransΓRes_app, ΓRes_map_assoc, coneΓ_π_app, ΓRes_map, ΓRes_naturality
|