Documentation Verification Report

IsSheaf

📁 Source: Mathlib/CategoryTheory/Sites/Hypercover/IsSheaf.lean

Statistics

MetricCount
DefinitionsIsGeneratedByOneHypercovers, OneHypercoverFamily, IsGenerating, isLimit, IsSheaf, IsSheaf, IsSheaf
7
TheoremsIsSheaf, le, fac, fac', fac'_assoc, hom_ext, exists_oneHypercover, isSheaf_iff, instIsGeneratedByOneHypercovers, isSheaf_iff_of_isGeneratedByOneHypercovers
10
Total17

AlgebraicGeometry.SheafedSpace

Theorems

NameKindAssumesProvesValidatesDepends On
IsSheaf 📖mathematicalTopCat.Presheaf.IsSheaf
AlgebraicGeometry.PresheafedSpace.carrier
toPresheafedSpace
AlgebraicGeometry.PresheafedSpace.presheaf

CategoryTheory.GrothendieckTopology

Definitions

NameCategoryTheorems
IsGeneratedByOneHypercovers 📖MathDef
1 mathmath: instIsGeneratedByOneHypercovers
OneHypercoverFamily 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instIsGeneratedByOneHypercovers 📖mathematicalIsGeneratedByOneHypercoversCover.preOneHypercover_sieve₀

CategoryTheory.GrothendieckTopology.OneHypercoverFamily

Definitions

NameCategoryTheorems
IsGenerating 📖CompData

Theorems

NameKindAssumesProvesValidatesDepends On
exists_oneHypercover 📖mathematicalCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Sieve.instCompleteLattice
CategoryTheory.PreZeroHypercover.sieve₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
IsGenerating.le
isSheaf_iff 📖mathematicalCategoryTheory.Presheaf.IsSheaf
CategoryTheory.Limits.IsLimit
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.PreOneHypercover.multicospanShape
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.PreOneHypercover.multicospanIndex
CategoryTheory.PreOneHypercover.multifork
CategoryTheory.Presheaf.isSheaf_iff_multifork
exists_oneHypercover

CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsGenerating

Theorems

NameKindAssumesProvesValidatesDepends On
le 📖mathematicalCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Sieve.instCompleteLattice
CategoryTheory.PreZeroHypercover.sieve₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover

CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff

Definitions

NameCategoryTheorems
isLimit 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
fac 📖mathematicalCategoryTheory.Limits.IsLimit
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.PreOneHypercover.multicospanShape
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.PreOneHypercover.multicospanIndex
CategoryTheory.PreOneHypercover.multifork
CategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Sieve.instCompleteLattice
CategoryTheory.PreZeroHypercover.sieve₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.Sieve.arrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.GrothendieckTopology.Cover.shape
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.GrothendieckTopology.OneHypercover.mem₀
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
lift
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.Multifork.ι
CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.GrothendieckTopology.OneHypercover.mem₀
hom_ext
CategoryTheory.GrothendieckTopology.pullback_stable
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.op_comp
fac'_assoc
CategoryTheory.Limits.Multifork.condition
fac' 📖mathematicalCategoryTheory.Limits.IsLimit
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.PreOneHypercover.multicospanShape
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.PreOneHypercover.multicospanIndex
CategoryTheory.PreOneHypercover.multifork
CategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Sieve.instCompleteLattice
CategoryTheory.PreZeroHypercover.sieve₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.GrothendieckTopology.Cover.shape
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.GrothendieckTopology.OneHypercover.mem₀
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.PreZeroHypercover.X
lift
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Limits.Multifork.ι
CategoryTheory.PreZeroHypercover.I₀
CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.GrothendieckTopology.OneHypercover.mem₀
CategoryTheory.Limits.Multifork.IsLimit.fac
fac'_assoc 📖mathematicalCategoryTheory.Limits.IsLimit
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.PreOneHypercover.multicospanShape
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.PreOneHypercover.multicospanIndex
CategoryTheory.PreOneHypercover.multifork
CategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Sieve.instCompleteLattice
CategoryTheory.PreZeroHypercover.sieve₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.GrothendieckTopology.Cover.shape
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.GrothendieckTopology.OneHypercover.mem₀
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
lift
CategoryTheory.PreZeroHypercover.X
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Limits.Multifork.ι
CategoryTheory.PreZeroHypercover.I₀
CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.GrothendieckTopology.OneHypercover.mem₀
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac'
hom_ext 📖CategoryTheory.Limits.IsLimit
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.PreOneHypercover.multicospanShape
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.PreOneHypercover.multicospanIndex
CategoryTheory.PreOneHypercover.multifork
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.GrothendieckTopology.OneHypercoverFamily.exists_oneHypercover
CategoryTheory.Limits.Multifork.IsLimit.hom_ext

CategoryTheory.Presheaf

Definitions

NameCategoryTheorems
IsSheaf 📖MathDef
43 mathmath: CategoryTheory.Equivalence.preregular_isSheaf_iff, isSheaf_of_isTerminal, CategoryTheory.ran_isSheaf_of_isCocontinuous, isSheaf_iff_isLimit_coverage, CategoryTheory.Equivalence.precoherent_isSheaf_iff_of_essentiallySmall, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff, isSheaf_of_iso_iff, isSheaf_iff_preservesFiniteProducts, isSheaf_iff_preservesFiniteProducts_and_equalizerCondition, Condensed.isSheafStonean, isSheaf_yoneda', CategoryTheory.Sheaf.tensorProd_isSheaf, SheafOfModules.isSheaf, isSheaf_coherent_iff_regular_and_extensive, isSheaf_iff_extensiveSheaf_of_projective, CategoryTheory.regularTopology.isSheaf_of_projective, isSheaf_iff_of_isGeneratedByOneHypercovers, isSheaf_iff_isSheaf', CategoryTheory.Sheaf.isSheaf_of_isLimit, CategoryTheory.isSheaf_pointwiseColimit, CategoryTheory.Sheaf.cond, Topology.IsUpperSet.isSheaf_of_isRightKanExtension, CategoryTheory.regularTopology.equalizerCondition_iff_isSheaf, isSheaf_iff_isLimit, isSheaf_iff_multiequalizer, CategoryTheory.GrothendieckTopology.sheafify_isSheaf, isSheaf_iff_multifork, isSheaf_iff_preservesFiniteProducts_of_projective, CategoryTheory.isSheaf_iff_isSheaf_of_type, CategoryTheory.Equivalence.precoherent_isSheaf_iff, isSheaf_bot, CategoryTheory.Pseudofunctor.IsPrestack.isSheaf, isSheaf_iff_isSheaf_comp, CategoryTheory.GrothendieckTopology.Plus.isSheaf_plus_plus, CategoryTheory.Functor.op_comp_isSheaf, CategoryTheory.GrothendieckTopology.Plus.isSheaf_of_sep, CategoryTheory.Equivalence.preregular_isSheaf_iff_of_essentiallySmall, isSheaf_iff_isSheaf_forget, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.isSheaf_iff, Condensed.isSheafProfinite, isSheaf_sup, CategoryTheory.Sheaf.tensorUnit_isSheaf, isSheaf_iff_isLimit_pretopology

Theorems

NameKindAssumesProvesValidatesDepends On
isSheaf_iff_of_isGeneratedByOneHypercovers 📖mathematicalIsSheaf
CategoryTheory.Limits.IsLimit
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.PreOneHypercover.multicospanShape
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.PreOneHypercover.multicospanIndex
CategoryTheory.PreOneHypercover.multifork
CategoryTheory.GrothendieckTopology.OneHypercoverFamily.isSheaf_iff

CategoryTheory.Presieve

Definitions

NameCategoryTheorems
IsSheaf 📖MathDef
26 mathmath: isSheaf_pretopology, isSheaf_iff_preservesFiniteProducts, isSheaf_bot, isSheaf_iff_of_nat_equiv, CategoryTheory.extensiveTopology.isSheaf_yoneda_obj, CategoryTheory.topology_eq_iff_same_sheaves, CategoryTheory.Precoverage.isSheaf_toGrothendieck_iff_of_isStableUnderBaseChange_of_small, CategoryTheory.Precoverage.isSheaf_toGrothendieck_iff, CategoryTheory.Functor.op_comp_isSheaf_of_types, isSheaf_of_yoneda, CategoryTheory.regularTopology.isSheaf_yoneda_obj, CategoryTheory.coherentTopology.isSheaf_yoneda_obj, CategoryTheory.Sheaf.sheaf_for_finestTopology, CategoryTheory.GrothendieckTopology.Subcanonical.isSheaf_of_isRepresentable, CategoryTheory.isSheaf_iff_isSheaf_of_type, isSheaf_coverage, IsSeparated.isSheaf, CategoryTheory.isSheaf_coherent, CategoryTheory.Functor.IsContinuous.op_comp_isSheaf_of_types, isSheaf_yoneda', isSheaf_comp_uliftFunctor_iff, CategoryTheory.classifier_isSheaf, CategoryTheory.Sheaf.isSheaf_of_isRepresentable, CategoryTheory.Precoverage.isSheaf_toGrothendieck_iff_of_isStableUnderBaseChange, isSheaf_sup, CategoryTheory.Sheaf.isSheaf_yoneda_obj

TopCat.Presheaf

Definitions

NameCategoryTheorems
IsSheaf 📖MathDef
22 mathmath: isSheaf_of_isTerminal_of_indiscrete, isSheaf_iff_isSheafUniqueGluing_types, isSheaf_iff_isSheafPairwiseIntersections, isSheaf_iff_isSheafPreservesLimitPairwiseIntersections, AlgebraicGeometry.Scheme.Modules.isSheaf, isSheaf_iff_isSheaf_comp, isSheaf_of_isSheafUniqueGluing_types, isSheaf_iff_isSheafOpensLeCover, AlgebraicGeometry.SheafedSpace.IsSheaf, isSheaf_on_punit_of_isTerminal, TopCat.subpresheafToTypes.isSheaf, isSheaf_on_punit_iff_isTerminal, isSheaf_iff_isSheaf_comp', isSheaf_unit, skyscraperPresheaf_isSheaf, isSheaf_iff_isSheafUniqueGluing, toTypes_isSheaf, isSheaf_iso_iff, toType_isSheaf, Alexandrov.isSheaf_principalsKanExtension, isSheaf_iff_isSheafEqualizerProducts, isSheaf_iff_isTerminal_of_indiscrete

---

← Back to Index