Documentation Verification Report

One

📁 Source: Mathlib/CategoryTheory/Sites/Hypercover/One.lean

Statistics

MetricCount
DefinitionsoneHypercover, preOneHypercover, OneHypercover, amalgamate, instCategory, inter, isLimitMultifork, isoMk, mk', multiforkLift, toPreOneHypercover, toZeroHypercover, trivial, PreOneHypercover, comp, h₁, id, mapMultiforkOfIsLimit, s₁, s₁', toHom, I₁, I₁', Y, Y', forkOfIsColimit, instCategory, instUniqueLMulticospanShapeSigmaOfIsColimit, instUniqueRMulticospanShapeSigmaOfIsColimit, inter, interFst, interLift, interSnd, isLimitMultiforkEquivIsLimitFork, isLimitSigmaOfIsColimitEquiv, multicospanIndex, multicospanShape, multifork, oneToZero, p₁, p₂, sieve₁, sieve₁', sigmaOfIsColimit, toPreZeroHypercover, toPullback, trivial, toPreOneHypercover, toOneHypercover
49
TheoremsoneHypercover_toPreOneHypercover, preOneHypercover_I₀, preOneHypercover_I₁, preOneHypercover_X, preOneHypercover_Y, preOneHypercover_f, preOneHypercover_p₁, preOneHypercover_p₂, preOneHypercover_sieve₀, preOneHypercover_sieve₁, arrowsCompatible, comp_h₀, comp_h₁, comp_s₀, comp_s₁, id_h₀, id_h₁, id_s₀, id_s₁, instNonempty, inter_toPreOneHypercover, isSheafFor_presieve₀, isoMk_hom, isoMk_inv, map_amalgamate, mem_sieve₁', mem₀, mem₁, mk'_toPreOneHypercover, multiforkLift_map, multiforkLift_map_assoc, toZeroHypercover_toPreZeroHypercover, trivial_toPreOneHypercover, comp_h₀, comp_h₁, comp_s₀, comp_s₁, ext, ext_iff, id_h₀, id_h₁, id_s₀, id_s₁, mapMultiforkOfIsLimit_ι, mapMultiforkOfIsLimit_ι_assoc, w₁₁, w₁₁_assoc, w₁₂, w₁₂_assoc, Y'_apply, comp_h₀, comp_h₁, comp_s₀, comp_s₁, forkOfIsColimit_pt, forkOfIsColimit_ι_map_inj, forkOfIsColimit_ι_map_inj_assoc, id_h₀, id_h₁, id_s₀, id_s₁, instNonempty, interFst_s₁, interFst_toHom, interSnd_s₁, interSnd_toHom, inter_I₁, inter_Y, inter_p₁, inter_p₂, inter_toPreZeroHypercover, multicospanIndex_fst, multicospanIndex_left, multicospanIndex_right, multicospanIndex_snd, multicospanShape_L, multicospanShape_R, multicospanShape_fst, multicospanShape_snd, multifork_ι, oneToZero_map, oneToZero_obj, p₁_sigmaOfIsColimit, p₁_sigmaOfIsColimit_assoc, p₂_sigmaOfIsColimit, p₂_sigmaOfIsColimit_assoc, sieve₀_trivial, sieve₁'_eq_sieve₁, sieve₁_apply, sieve₁_eq_pullback_sieve₁', sieve₁_inter, sieve₁_trivial, sigmaOfIsColimit_Y, sigmaOfIsColimit_toPreZeroHypercover, trivial_I₁, trivial_Y, trivial_p₁, trivial_p₂, trivial_toPreZeroHypercover, w, ext_of_isSeparatedFor, toPreOneHypercover_I₁, toPreOneHypercover_Y, toPreOneHypercover_p₁, toPreOneHypercover_p₂, toPreOneHypercover_toPreZeroHypercover, toOneHypercover_toPreOneHypercover, instHasPullbacksToPreOneHypercover, sieve₁'_toPreOneHypercover_eq_top
109
Total158

CategoryTheory

Definitions

NameCategoryTheorems
PreOneHypercover 📖CompData
13 mathmath: PreOneHypercover.comp_s₀, GrothendieckTopology.OneHypercover.isoMk_inv, GrothendieckTopology.OneHypercover.isoMk_hom, PreOneHypercover.oneToZero_obj, PreOneHypercover.id_h₀, PreOneHypercover.id_s₁, PreOneHypercover.comp_s₁, PreOneHypercover.instNonempty, PreOneHypercover.id_s₀, PreOneHypercover.oneToZero_map, PreOneHypercover.comp_h₀, PreOneHypercover.id_h₁, PreOneHypercover.comp_h₁

Theorems

NameKindAssumesProvesValidatesDepends On
instHasPullbacksToPreOneHypercover 📖mathematicalPreZeroHypercover.HasPullbacksPreOneHypercover.toPreZeroHypercover
PreZeroHypercover.toPreOneHypercover
sieve₁'_toPreOneHypercover_eq_top 📖mathematicalPreZeroHypercover.HasPullbacksPreOneHypercover.sieve₁'
PreZeroHypercover.toPreOneHypercover
instHasPullbacksToPreOneHypercover
Top.top
Sieve
Limits.pullback
PreZeroHypercover.X
PreOneHypercover.toPreZeroHypercover
PreZeroHypercover.f
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Sieve.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
instHasPullbacksToPreOneHypercover
eq_top_iff
Presieve.ofArrows.mk'
Limits.pullback.hom_ext
Category.id_comp
Limits.pullback.lift_fst_snd
Category.comp_id

CategoryTheory.GrothendieckTopology

Definitions

NameCategoryTheorems
OneHypercover 📖CompData
13 mathmath: OneHypercover.comp_h₁, OneHypercover.isoMk_inv, OneHypercover.isoMk_hom, OneHypercover.instNonempty, OneHypercover.id_s₁, OneHypercover.id_h₀, OneHypercover.id_s₀, OneHypercover.comp_s₁, CategoryTheory.PreOneHypercover.Homotopy.map_eq_map, OneHypercover.comp_h₀, HOneHypercover.isCofiltered_of_hasPullbacks, OneHypercover.comp_s₀, OneHypercover.id_h₁

CategoryTheory.GrothendieckTopology.Cover

Definitions

NameCategoryTheorems
oneHypercover 📖CompOp
1 mathmath: oneHypercover_toPreOneHypercover
preOneHypercover 📖CompOp
10 mathmath: preOneHypercover_Y, preOneHypercover_I₀, preOneHypercover_p₂, preOneHypercover_sieve₀, preOneHypercover_I₁, preOneHypercover_p₁, preOneHypercover_f, preOneHypercover_sieve₁, preOneHypercover_X, oneHypercover_toPreOneHypercover

Theorems

NameKindAssumesProvesValidatesDepends On
oneHypercover_toPreOneHypercover 📖mathematicalCategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
oneHypercover
preOneHypercover
preOneHypercover_I₀ 📖mathematicalCategoryTheory.PreZeroHypercover.I₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
preOneHypercover
Arrow
preOneHypercover_I₁ 📖mathematicalCategoryTheory.PreOneHypercover.I₁
preOneHypercover
Arrow.Relation
preOneHypercover_X 📖mathematicalCategoryTheory.PreZeroHypercover.X
CategoryTheory.PreOneHypercover.toPreZeroHypercover
preOneHypercover
Arrow.Y
preOneHypercover_Y 📖mathematicalCategoryTheory.PreOneHypercover.Y
preOneHypercover
Arrow.Relation.Z
preOneHypercover_f 📖mathematicalCategoryTheory.PreZeroHypercover.f
CategoryTheory.PreOneHypercover.toPreZeroHypercover
preOneHypercover
Arrow.f
preOneHypercover_p₁ 📖mathematicalCategoryTheory.PreOneHypercover.p₁
preOneHypercover
Arrow.Relation.g₁
preOneHypercover_p₂ 📖mathematicalCategoryTheory.PreOneHypercover.p₂
preOneHypercover
Arrow.Relation.g₂
preOneHypercover_sieve₀ 📖mathematicalCategoryTheory.PreZeroHypercover.sieve₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
preOneHypercover
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.ext
CategoryTheory.Sieve.downward_closed
Arrow.hf
preOneHypercover_sieve₁ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Arrow.Y
Arrow.f
CategoryTheory.PreOneHypercover.sieve₁
preOneHypercover
Top.top
CategoryTheory.Sieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.Sieve.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Sieve.ext

CategoryTheory.GrothendieckTopology.OneHypercover

Definitions

NameCategoryTheorems
amalgamate 📖CompOp
1 mathmath: map_amalgamate
instCategory 📖CompOp
12 mathmath: comp_h₁, isoMk_inv, isoMk_hom, id_s₁, id_h₀, id_s₀, comp_s₁, CategoryTheory.PreOneHypercover.Homotopy.map_eq_map, comp_h₀, CategoryTheory.GrothendieckTopology.HOneHypercover.isCofiltered_of_hasPullbacks, comp_s₀, id_h₁
inter 📖CompOp
1 mathmath: inter_toPreOneHypercover
isLimitMultifork 📖CompOp
isoMk 📖CompOp
2 mathmath: isoMk_inv, isoMk_hom
mk' 📖CompOp
1 mathmath: mk'_toPreOneHypercover
multiforkLift 📖CompOp
2 mathmath: multiforkLift_map, multiforkLift_map_assoc
toPreOneHypercover 📖CompOp
37 mathmath: AlgebraicGeometry.Scheme.GlueData.oneHypercover_I₁, comp_h₁, mem₀, isoMk_inv, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff, isoMk_hom, multiforkLift_map, mem_sieve₁', exists_nonempty_homotopy, CategoryTheory.Precoverage.ZeroHypercover.toOneHypercover_toPreOneHypercover, mk'_toPreOneHypercover, CategoryTheory.Presheaf.isSheaf_iff_of_isGeneratedByOneHypercovers, isSheafFor_presieve₀, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.exists_oneHypercover, id_s₁, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsGenerating.le, AlgebraicGeometry.Scheme.GlueData.oneHypercover_p₂, map_toPreOneHypercover, IsPreservedBy.mem₀, id_h₀, id_s₀, comp_s₁, trivial_toPreOneHypercover, AlgebraicGeometry.Scheme.GlueData.oneHypercover_X, AlgebraicGeometry.Scheme.GlueData.oneHypercover_I₀, cylinder_toPreOneHypercover, comp_h₀, CategoryTheory.Functor.OneHypercoverDenseData.toOneHypercover_toPreOneHypercover, AlgebraicGeometry.Scheme.GlueData.oneHypercover_f, comp_s₀, AlgebraicGeometry.Scheme.GlueData.oneHypercover_Y, AlgebraicGeometry.Scheme.GlueData.oneHypercover_p₁, CategoryTheory.GrothendieckTopology.Cover.oneHypercover_toPreOneHypercover, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.isSheaf_iff, toZeroHypercover_toPreZeroHypercover, multiforkLift_map_assoc, id_h₁
toZeroHypercover 📖CompOp
1 mathmath: toZeroHypercover_toPreZeroHypercover
trivial 📖CompOp
1 mathmath: trivial_toPreOneHypercover

Theorems

NameKindAssumesProvesValidatesDepends On
arrowsCompatible 📖mathematicalCategoryTheory.Presieve.IsSeparated
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toPreOneHypercover
CategoryTheory.PreOneHypercover.Y
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreOneHypercover.p₁
CategoryTheory.PreOneHypercover.p₂
CategoryTheory.Presieve.Arrows.Compatible
CategoryTheory.PreZeroHypercover.I₀
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Presieve.IsSeparatedFor.ext
mem₁
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
comp_h₀ 📖mathematicalCategoryTheory.PreZeroHypercover.Hom.h₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toPreOneHypercover
CategoryTheory.PreOneHypercover.Hom.toHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.GrothendieckTopology.OneHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.Hom.s₀
comp_h₁ 📖mathematicalCategoryTheory.PreOneHypercover.Hom.h₁
toPreOneHypercover
CategoryTheory.CategoryStruct.comp
CategoryTheory.GrothendieckTopology.OneHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.PreOneHypercover.Y
CategoryTheory.PreZeroHypercover.Hom.s₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.PreOneHypercover.Hom.toHom
CategoryTheory.PreOneHypercover.Hom.s₁
comp_s₀ 📖mathematicalCategoryTheory.PreZeroHypercover.Hom.s₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toPreOneHypercover
CategoryTheory.PreOneHypercover.Hom.toHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.GrothendieckTopology.OneHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
comp_s₁ 📖mathematicalCategoryTheory.PreOneHypercover.Hom.s₁
toPreOneHypercover
CategoryTheory.CategoryStruct.comp
CategoryTheory.GrothendieckTopology.OneHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.PreZeroHypercover.Hom.s₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.PreOneHypercover.Hom.toHom
id_h₀ 📖mathematicalCategoryTheory.PreZeroHypercover.Hom.h₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toPreOneHypercover
CategoryTheory.PreOneHypercover.Hom.toHom
CategoryTheory.CategoryStruct.id
CategoryTheory.GrothendieckTopology.OneHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.PreZeroHypercover.X
id_h₁ 📖mathematicalCategoryTheory.PreOneHypercover.Hom.h₁
toPreOneHypercover
CategoryTheory.CategoryStruct.id
CategoryTheory.GrothendieckTopology.OneHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.PreOneHypercover.Y
id_s₀ 📖mathematicalCategoryTheory.PreZeroHypercover.Hom.s₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toPreOneHypercover
CategoryTheory.PreOneHypercover.Hom.toHom
CategoryTheory.CategoryStruct.id
CategoryTheory.GrothendieckTopology.OneHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
id_s₁ 📖mathematicalCategoryTheory.PreOneHypercover.Hom.s₁
toPreOneHypercover
CategoryTheory.CategoryStruct.id
CategoryTheory.GrothendieckTopology.OneHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
instNonempty 📖mathematicalCategoryTheory.GrothendieckTopology.OneHypercover
inter_toPreOneHypercover 📖mathematicalCategoryTheory.Limits.HasPullback
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toPreOneHypercover
CategoryTheory.PreZeroHypercover.f
CategoryTheory.PreOneHypercover.Y
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreOneHypercover.p₁
inter
CategoryTheory.PreOneHypercover.inter
isSheafFor_presieve₀ 📖mathematicalCategoryTheory.Presieve.IsSheafCategoryTheory.Presieve.IsSheafFor
CategoryTheory.PreZeroHypercover.presieve₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toPreOneHypercover
CategoryTheory.Presieve.isSheafFor_iff_generate
mem₀
isoMk_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.GrothendieckTopology.OneHypercover
instCategory
isoMk
CategoryTheory.PreOneHypercover
CategoryTheory.PreOneHypercover.instCategory
toPreOneHypercover
isoMk_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.GrothendieckTopology.OneHypercover
instCategory
isoMk
CategoryTheory.PreOneHypercover
CategoryTheory.PreOneHypercover.instCategory
toPreOneHypercover
map_amalgamate 📖mathematicalCategoryTheory.Presieve.IsSheaf
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toPreOneHypercover
CategoryTheory.PreOneHypercover.Y
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreOneHypercover.p₁
CategoryTheory.PreOneHypercover.p₂
CategoryTheory.PreZeroHypercover.f
amalgamate
isSheafFor_presieve₀
amalgamate.eq_1
CategoryTheory.Presieve.IsSheafFor.valid_glue
mem_sieve₁' 📖mathematicalCategoryTheory.Sieve
CategoryTheory.Limits.pullback
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toPreOneHypercover
CategoryTheory.PreZeroHypercover.f
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.PreOneHypercover.sieve₁'
CategoryTheory.PreOneHypercover.sieve₁'_eq_sieve₁
mem₁
CategoryTheory.Limits.pullback.condition
mem₀ 📖mathematicalCategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.PreZeroHypercover.sieve₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toPreOneHypercover
mem₁ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toPreOneHypercover
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.PreOneHypercover.sieve₁
mk'_toPreOneHypercover 📖mathematicalCategoryTheory.PreZeroHypercover.HasPullbacks
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.PreZeroHypercover.sieve₀
CategoryTheory.Limits.pullback
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
CategoryTheory.PreOneHypercover.sieve₁'
toPreOneHypercover
mk'
multiforkLift_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.PreOneHypercover.multicospanShape
toPreOneHypercover
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.PreOneHypercover.multicospanIndex
CategoryTheory.Sheaf.val
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreOneHypercover.toPreZeroHypercover
multiforkLift
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Limits.Multifork.ι
CategoryTheory.Presheaf.IsSheaf.amalgamateOfArrows_map
CategoryTheory.Sheaf.cond
mem₀
multiforkLift_map_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.PreOneHypercover.multicospanShape
toPreOneHypercover
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.PreOneHypercover.multicospanIndex
CategoryTheory.Sheaf.val
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
multiforkLift
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Limits.Multifork.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
multiforkLift_map
toZeroHypercover_toPreZeroHypercover 📖mathematicalCategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
CategoryTheory.GrothendieckTopology.toPrecoverage
toZeroHypercover
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toPreOneHypercover
trivial_toPreOneHypercover 📖mathematicaltoPreOneHypercover
trivial
CategoryTheory.PreOneHypercover.trivial

CategoryTheory.PreOneHypercover

Definitions

NameCategoryTheorems
I₁ 📖CompOp
39 mathmath: AlgebraicGeometry.Scheme.GlueData.oneHypercover_I₁, forkOfIsColimit_ι_map_inj_assoc, trivial_I₁, forkOfIsColimit_pt, p₁_sigmaOfIsColimit_assoc, inter_I₁, multicospanIndex_fst, cylinder_X, cylinderHom_h₁, multicospanIndex_right, CategoryTheory.PreZeroHypercover.toPreOneHypercover_I₁, CategoryTheory.Functor.PreOneHypercoverDenseData.toPreOneHypercover_I₁, multicospanShape_fst, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_I₁, multicospanIndex_snd, p₁_sigmaOfIsColimit, cylinder_I₀, inter_p₂, Y'_apply, cylinder_f, cylinder_I₁, multicospanShape_snd, sieve₁_apply, inter_Y, sieve₁'_cylinder, interSnd_s₁, toPullback_cylinder, inter_p₁, cylinder_p₁, cylinder_p₂, cylinderHom_s₁, interFst_s₁, forkOfIsColimit_ι_map_inj, cylinderHom_s₀, p₂_sigmaOfIsColimit, p₂_sigmaOfIsColimit_assoc, map_I₁, cylinderHom_h₀, cylinder_Y
I₁' 📖CompOp
9 mathmath: forkOfIsColimit_ι_map_inj_assoc, forkOfIsColimit_pt, p₁_sigmaOfIsColimit_assoc, p₁_sigmaOfIsColimit, multicospanShape_R, sigmaOfIsColimit_Y, forkOfIsColimit_ι_map_inj, p₂_sigmaOfIsColimit, p₂_sigmaOfIsColimit_assoc
Y 📖CompOp
39 mathmath: CategoryTheory.GrothendieckTopology.OneHypercover.comp_h₁, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_Y, Homotopy.wl, Hom.w₁₁, multicospanIndex_fst, cylinderHom_h₁, multicospanIndex_right, Homotopy.wl_assoc, multicospanIndex_snd, map_p₁, p₁_sigmaOfIsColimit, Y'_apply, w, sigmaOfIsColimit_Y, Hom.w₁₂_assoc, sieve₁_apply, Hom.id_h₁, sieve₁'_cylinder, toPullback_cylinder, Hom.w₁₂, Homotopy.wr, CategoryTheory.Functor.PreOneHypercoverDenseData.toPreOneHypercover_Y, sieve₁_inter, cylinder_p₁, AlgebraicGeometry.Scheme.GlueData.oneHypercover_Y, map_Y, cylinder_p₂, trivial_Y, Hom.comp_h₁, id_h₁, CategoryTheory.PreZeroHypercover.toPreOneHypercover_Y, p₂_sigmaOfIsColimit, Hom.w₁₁_assoc, Homotopy.wr_assoc, map_p₂, CategoryTheory.GrothendieckTopology.OneHypercover.id_h₁, comp_h₁, cylinderHom_h₀, cylinder_Y
Y' 📖CompOp
9 mathmath: forkOfIsColimit_ι_map_inj_assoc, forkOfIsColimit_pt, p₁_sigmaOfIsColimit_assoc, p₁_sigmaOfIsColimit, Y'_apply, sigmaOfIsColimit_Y, forkOfIsColimit_ι_map_inj, p₂_sigmaOfIsColimit, p₂_sigmaOfIsColimit_assoc
forkOfIsColimit 📖CompOp
3 mathmath: forkOfIsColimit_ι_map_inj_assoc, forkOfIsColimit_pt, forkOfIsColimit_ι_map_inj
instCategory 📖CompOp
12 mathmath: comp_s₀, CategoryTheory.GrothendieckTopology.OneHypercover.isoMk_inv, CategoryTheory.GrothendieckTopology.OneHypercover.isoMk_hom, oneToZero_obj, id_h₀, id_s₁, comp_s₁, id_s₀, oneToZero_map, comp_h₀, id_h₁, comp_h₁
instUniqueLMulticospanShapeSigmaOfIsColimit 📖CompOp
instUniqueRMulticospanShapeSigmaOfIsColimit 📖CompOp
inter 📖CompOp
11 mathmath: inter_I₁, inter_toPreZeroHypercover, interSnd_toHom, inter_p₂, interFst_toHom, inter_Y, CategoryTheory.GrothendieckTopology.OneHypercover.inter_toPreOneHypercover, interSnd_s₁, inter_p₁, sieve₁_inter, interFst_s₁
interFst 📖CompOp
2 mathmath: interFst_toHom, interFst_s₁
interLift 📖CompOp
interSnd 📖CompOp
2 mathmath: interSnd_toHom, interSnd_s₁
isLimitMultiforkEquivIsLimitFork 📖CompOp
isLimitSigmaOfIsColimitEquiv 📖CompOp
multicospanIndex 📖CompOp
12 mathmath: multicospanIndex_fst, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff, CategoryTheory.GrothendieckTopology.OneHypercover.multiforkLift_map, multicospanIndex_right, multifork_ι, multicospanIndex_snd, CategoryTheory.Presheaf.isSheaf_iff_of_isGeneratedByOneHypercovers, multicospanIndex_left, Hom.mapMultiforkOfIsLimit_ι_assoc, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.isSheaf_iff, Hom.mapMultiforkOfIsLimit_ι, CategoryTheory.GrothendieckTopology.OneHypercover.multiforkLift_map_assoc
multicospanShape 📖CompOp
16 mathmath: multicospanIndex_fst, CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff, CategoryTheory.GrothendieckTopology.OneHypercover.multiforkLift_map, multicospanIndex_right, multicospanShape_fst, multifork_ι, multicospanIndex_snd, CategoryTheory.Presheaf.isSheaf_iff_of_isGeneratedByOneHypercovers, multicospanShape_L, multicospanShape_R, multicospanIndex_left, multicospanShape_snd, Hom.mapMultiforkOfIsLimit_ι_assoc, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.isSheaf_iff, Hom.mapMultiforkOfIsLimit_ι, CategoryTheory.GrothendieckTopology.OneHypercover.multiforkLift_map_assoc
multifork 📖CompOp
4 mathmath: CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff, multifork_ι, CategoryTheory.Presheaf.isSheaf_iff_of_isGeneratedByOneHypercovers, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.isSheaf_iff
oneToZero 📖CompOp
2 mathmath: oneToZero_obj, oneToZero_map
p₁ 📖CompOp
24 mathmath: forkOfIsColimit_ι_map_inj_assoc, forkOfIsColimit_pt, Homotopy.wl, p₁_sigmaOfIsColimit_assoc, Hom.w₁₁, multicospanIndex_fst, trivial_p₁, cylinderHom_h₁, CategoryTheory.PreZeroHypercover.toPreOneHypercover_p₁, Homotopy.wl_assoc, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_p₁, map_p₁, p₁_sigmaOfIsColimit, w, sieve₁_apply, toPullback_cylinder, sieve₁_inter, cylinder_p₁, cylinder_p₂, AlgebraicGeometry.Scheme.GlueData.oneHypercover_p₁, forkOfIsColimit_ι_map_inj, Hom.w₁₁_assoc, cylinder_Y, CategoryTheory.Functor.PreOneHypercoverDenseData.toPreOneHypercover_p₁
p₂ 📖CompOp
24 mathmath: forkOfIsColimit_ι_map_inj_assoc, forkOfIsColimit_pt, cylinderHom_h₁, CategoryTheory.Functor.PreOneHypercoverDenseData.toPreOneHypercover_p₂, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_p₂, multicospanIndex_snd, inter_p₂, AlgebraicGeometry.Scheme.GlueData.oneHypercover_p₂, w, trivial_p₂, Hom.w₁₂_assoc, sieve₁_apply, toPullback_cylinder, Hom.w₁₂, Homotopy.wr, cylinder_p₁, cylinder_p₂, forkOfIsColimit_ι_map_inj, p₂_sigmaOfIsColimit, p₂_sigmaOfIsColimit_assoc, Homotopy.wr_assoc, map_p₂, CategoryTheory.PreZeroHypercover.toPreOneHypercover_p₂, cylinder_Y
sieve₁ 📖CompOp
9 mathmath: CategoryTheory.Functor.OneHypercoverDenseData.mem₁, sieve₁'_eq_sieve₁, sieve₁_eq_pullback_sieve₁', CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_sieve₁, CategoryTheory.GrothendieckTopology.OneHypercover.IsPreservedBy.mem₁, sieve₁_apply, sieve₁_inter, sieve₁_trivial, CategoryTheory.GrothendieckTopology.OneHypercover.mem₁
sieve₁' 📖CompOp
6 mathmath: CategoryTheory.GrothendieckTopology.OneHypercover.mem_sieve₁', sieve₁'_eq_sieve₁, sieve₁_eq_pullback_sieve₁', sieve₀_cylinder, sieve₁'_cylinder, CategoryTheory.sieve₁'_toPreOneHypercover_eq_top
sigmaOfIsColimit 📖CompOp
6 mathmath: p₁_sigmaOfIsColimit_assoc, p₁_sigmaOfIsColimit, sigmaOfIsColimit_Y, sigmaOfIsColimit_toPreZeroHypercover, p₂_sigmaOfIsColimit, p₂_sigmaOfIsColimit_assoc
toPreZeroHypercover 📖CompOp
94 mathmath: forkOfIsColimit_ι_map_inj_assoc, CategoryTheory.PreZeroHypercover.toPreOneHypercover_toPreZeroHypercover, Hom.comp_s₁, Hom.ext_iff, forkOfIsColimit_pt, CategoryTheory.GrothendieckTopology.OneHypercover.comp_h₁, comp_s₀, Homotopy.wl, p₁_sigmaOfIsColimit_assoc, Hom.w₁₁, CategoryTheory.GrothendieckTopology.OneHypercover.mem₀, multicospanIndex_fst, cylinder_X, cylinderHom_h₁, Hom.comp_h₀, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_I₀, CategoryTheory.GrothendieckTopology.OneHypercover.multiforkLift_map, map_I₀, oneToZero_obj, map_X, multicospanIndex_right, CategoryTheory.GrothendieckTopology.OneHypercover.mem_sieve₁', Homotopy.wl_assoc, multicospanShape_fst, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_sieve₀, multifork_ι, trivial_toPreZeroHypercover, id_h₀, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_f, multicospanIndex_snd, sieve₁'_eq_sieve₁, map_p₁, Hom.comp_s₀, p₁_sigmaOfIsColimit, CategoryTheory.GrothendieckTopology.OneHypercover.isSheafFor_presieve₀, multicospanShape_L, cylinder_I₀, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.exists_oneHypercover, Y'_apply, multicospanIndex_left, cylinder_f, comp_s₁, cylinder_I₁, CategoryTheory.instHasPullbacksToPreOneHypercover, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsGenerating.le, id_s₀, CategoryTheory.Functor.PreOneHypercoverDenseData.toPreOneHypercover_I₀, w, CategoryTheory.GrothendieckTopology.OneHypercover.IsPreservedBy.mem₀, Hom.id_h₀, CategoryTheory.Functor.OneHypercoverDenseData.mem₀, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_X, sieve₀_cylinder, CategoryTheory.Functor.PreOneHypercoverDenseData.toPreOneHypercover_X, CategoryTheory.GrothendieckTopology.OneHypercover.id_h₀, CategoryTheory.Functor.PreOneHypercoverDenseData.toPreOneHypercover_f, CategoryTheory.GrothendieckTopology.OneHypercover.id_s₀, CategoryTheory.GrothendieckTopology.OneHypercover.comp_s₁, multicospanShape_snd, Hom.w₁₂_assoc, sieve₁_apply, AlgebraicGeometry.Scheme.GlueData.oneHypercover_X, sieve₁'_cylinder, CategoryTheory.sieve₁'_toPreOneHypercover_eq_top, toPullback_cylinder, sigmaOfIsColimit_toPreZeroHypercover, AlgebraicGeometry.Scheme.GlueData.oneHypercover_I₀, CategoryTheory.GrothendieckTopology.OneHypercover.comp_h₀, Hom.w₁₂, comp_h₀, Homotopy.wr, AlgebraicGeometry.Scheme.GlueData.oneHypercover_f, CategoryTheory.GrothendieckTopology.OneHypercover.comp_s₀, cylinder_p₁, Hom.mapMultiforkOfIsLimit_ι_assoc, cylinder_p₂, map_f, cylinderHom_s₁, Hom.comp_h₁, forkOfIsColimit_ι_map_inj, cylinderHom_s₀, Hom.mapMultiforkOfIsLimit_ι, sieve₀_trivial, p₂_sigmaOfIsColimit, CategoryTheory.GrothendieckTopology.OneHypercover.toZeroHypercover_toPreZeroHypercover, Hom.w₁₁_assoc, CategoryTheory.GrothendieckTopology.OneHypercover.multiforkLift_map_assoc, p₂_sigmaOfIsColimit_assoc, Homotopy.wr_assoc, map_p₂, comp_h₁, Hom.id_s₀, cylinderHom_h₀, cylinder_Y
toPullback 📖CompOp
7 mathmath: cylinderHom_h₁, sieve₁'_cylinder, toPullback_cylinder, cylinder_p₁, cylinder_p₂, cylinderHom_h₀, cylinder_Y
trivial 📖CompOp
8 mathmath: trivial_I₁, trivial_p₁, trivial_toPreZeroHypercover, CategoryTheory.GrothendieckTopology.OneHypercover.trivial_toPreOneHypercover, trivial_p₂, trivial_Y, sieve₀_trivial, sieve₁_trivial

Theorems

NameKindAssumesProvesValidatesDepends On
Y'_apply 📖mathematicalY'
Y
CategoryTheory.PreZeroHypercover.I₀
toPreZeroHypercover
I₁
comp_h₀ 📖mathematicalCategoryTheory.PreZeroHypercover.Hom.h₀
toPreZeroHypercover
Hom.toHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.PreOneHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.Hom.s₀
comp_h₁ 📖mathematicalHom.h₁
CategoryTheory.CategoryStruct.comp
CategoryTheory.PreOneHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
Y
CategoryTheory.PreZeroHypercover.Hom.s₀
toPreZeroHypercover
Hom.toHom
Hom.s₁
comp_s₀ 📖mathematicalCategoryTheory.PreZeroHypercover.Hom.s₀
toPreZeroHypercover
Hom.toHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.PreOneHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
comp_s₁ 📖mathematicalHom.s₁
CategoryTheory.CategoryStruct.comp
CategoryTheory.PreOneHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.PreZeroHypercover.Hom.s₀
toPreZeroHypercover
Hom.toHom
forkOfIsColimit_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
CategoryTheory.PreZeroHypercover.I₀
toPreZeroHypercover
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.PreZeroHypercover.X
I₁'
Y'
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cofan.IsColimit.desc
CategoryTheory.CategoryStruct.comp
I₁
p₁
p₂
forkOfIsColimit
forkOfIsColimit_ι_map_inj 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
CategoryTheory.PreZeroHypercover.I₀
toPreZeroHypercover
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.PreZeroHypercover.X
I₁'
Y'
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.Cofan.IsColimit.desc
I₁
p₁
p₂
forkOfIsColimit
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Fork.ι
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Limits.Cofan.IsColimit.fac
forkOfIsColimit_ι_map_inj_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
CategoryTheory.PreZeroHypercover.I₀
toPreZeroHypercover
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.PreZeroHypercover.X
I₁'
Y'
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.Cofan.IsColimit.desc
I₁
p₁
p₂
forkOfIsColimit
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Fork.ι
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
id_h₀ 📖mathematicalCategoryTheory.PreZeroHypercover.Hom.h₀
toPreZeroHypercover
Hom.toHom
CategoryTheory.CategoryStruct.id
CategoryTheory.PreOneHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.PreZeroHypercover.X
id_h₁ 📖mathematicalHom.h₁
CategoryTheory.CategoryStruct.id
CategoryTheory.PreOneHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
Y
id_s₀ 📖mathematicalCategoryTheory.PreZeroHypercover.Hom.s₀
toPreZeroHypercover
Hom.toHom
CategoryTheory.CategoryStruct.id
CategoryTheory.PreOneHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
id_s₁ 📖mathematicalHom.s₁
CategoryTheory.CategoryStruct.id
CategoryTheory.PreOneHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
instNonempty 📖mathematicalCategoryTheory.PreOneHypercover
interFst_s₁ 📖mathematicalCategoryTheory.Limits.HasPullback
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
Y
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
p₁
Hom.s₁
inter
interFst
I₁
CategoryTheory.PreZeroHypercover.I₀
interFst_toHom 📖mathematicalCategoryTheory.Limits.HasPullback
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
Y
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
p₁
Hom.toHom
inter
interFst
CategoryTheory.PreZeroHypercover.interFst
interSnd_s₁ 📖mathematicalCategoryTheory.Limits.HasPullback
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
Y
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
p₁
Hom.s₁
inter
interSnd
I₁
CategoryTheory.PreZeroHypercover.I₀
interSnd_toHom 📖mathematicalCategoryTheory.Limits.HasPullback
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
Y
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
p₁
Hom.toHom
inter
interSnd
CategoryTheory.PreZeroHypercover.interSnd
inter_I₁ 📖mathematicalCategoryTheory.Limits.HasPullback
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
Y
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
p₁
I₁
inter
CategoryTheory.PreZeroHypercover.I₀
inter_Y 📖mathematicalCategoryTheory.Limits.HasPullback
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
Y
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
p₁
inter
CategoryTheory.Limits.pullback
CategoryTheory.PreZeroHypercover.I₀
I₁
inter_p₁ 📖mathematicalCategoryTheory.Limits.HasPullback
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
Y
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
p₁
inter
CategoryTheory.Limits.pullback.map
CategoryTheory.PreZeroHypercover.I₀
I₁
DFunLike.coe
Equiv
CategoryTheory.PreZeroHypercover.bind
CategoryTheory.PreZeroHypercover.pullback₁
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.sigmaEquivProd
CategoryTheory.CategoryStruct.id
inter_p₂ 📖mathematicalCategoryTheory.Limits.HasPullback
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
Y
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
p₁
p₂
inter
CategoryTheory.Limits.pullback.map
CategoryTheory.PreZeroHypercover.I₀
I₁
DFunLike.coe
Equiv
CategoryTheory.PreZeroHypercover.bind
CategoryTheory.PreZeroHypercover.pullback₁
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.sigmaEquivProd
CategoryTheory.CategoryStruct.id
inter_toPreZeroHypercover 📖mathematicalCategoryTheory.Limits.HasPullback
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
Y
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
p₁
inter
CategoryTheory.PreZeroHypercover.inter
multicospanIndex_fst 📖mathematicalCategoryTheory.Limits.MulticospanIndex.fst
multicospanShape
multicospanIndex
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.Limits.MulticospanShape.fst
Y
CategoryTheory.PreZeroHypercover.I₀
I₁
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
p₁
multicospanIndex_left 📖mathematicalCategoryTheory.Limits.MulticospanIndex.left
multicospanShape
multicospanIndex
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
multicospanIndex_right 📖mathematicalCategoryTheory.Limits.MulticospanIndex.right
multicospanShape
multicospanIndex
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
Y
CategoryTheory.PreZeroHypercover.I₀
toPreZeroHypercover
I₁
multicospanIndex_snd 📖mathematicalCategoryTheory.Limits.MulticospanIndex.snd
multicospanShape
multicospanIndex
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.Limits.MulticospanShape.snd
Y
CategoryTheory.PreZeroHypercover.I₀
I₁
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
p₂
multicospanShape_L 📖mathematicalCategoryTheory.Limits.MulticospanShape.L
multicospanShape
CategoryTheory.PreZeroHypercover.I₀
toPreZeroHypercover
multicospanShape_R 📖mathematicalCategoryTheory.Limits.MulticospanShape.R
multicospanShape
I₁'
multicospanShape_fst 📖mathematicalCategoryTheory.Limits.MulticospanShape.fst
multicospanShape
CategoryTheory.PreZeroHypercover.I₀
toPreZeroHypercover
I₁
multicospanShape_snd 📖mathematicalCategoryTheory.Limits.MulticospanShape.snd
multicospanShape
CategoryTheory.PreZeroHypercover.I₀
toPreZeroHypercover
I₁
multifork_ι 📖mathematicalCategoryTheory.Limits.Multifork.ι
multicospanShape
multicospanIndex
multifork
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.f
oneToZero_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.PreOneHypercover
instCategory
CategoryTheory.PreZeroHypercover
CategoryTheory.PreZeroHypercover.instCategory
oneToZero
Hom.toHom
oneToZero_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.PreOneHypercover
instCategory
CategoryTheory.PreZeroHypercover
CategoryTheory.PreZeroHypercover.instCategory
oneToZero
toPreZeroHypercover
p₁_sigmaOfIsColimit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Y'
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
I₁'
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
sigmaOfIsColimit
p₁
Y
CategoryTheory.PreZeroHypercover.I₀
I₁
CategoryTheory.Limits.Cofan.IsColimit.fac
p₁_sigmaOfIsColimit_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Y'
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
I₁'
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
sigmaOfIsColimit
p₁
CategoryTheory.PreZeroHypercover.I₀
I₁
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
p₁_sigmaOfIsColimit
p₂_sigmaOfIsColimit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Y'
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
I₁'
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
sigmaOfIsColimit
p₂
Y
CategoryTheory.PreZeroHypercover.I₀
I₁
CategoryTheory.Limits.Cofan.IsColimit.fac
p₂_sigmaOfIsColimit_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Y'
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
I₁'
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
sigmaOfIsColimit
p₂
CategoryTheory.PreZeroHypercover.I₀
I₁
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
p₂_sigmaOfIsColimit
sieve₀_trivial 📖mathematicalCategoryTheory.PreZeroHypercover.sieve₀
toPreZeroHypercover
trivial
Top.top
CategoryTheory.Sieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.Sieve.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.PreZeroHypercover.sieve₀.eq_1
CategoryTheory.Sieve.ofArrows.eq_1
CategoryTheory.PreZeroHypercover.presieve₀.eq_1
CategoryTheory.PreZeroHypercover.presieve₀_singleton
CategoryTheory.Sieve.generate_of_singleton_isSplitEpi
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.IsIso.id
sieve₁'_eq_sieve₁ 📖mathematicalsieve₁'
sieve₁
CategoryTheory.Limits.pullback
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.snd
CategoryTheory.Sieve.pullback_id
CategoryTheory.Limits.pullback.condition
sieve₁_eq_pullback_sieve₁'
CategoryTheory.Limits.pullback.lift_fst_snd
sieve₁_apply 📖mathematicalCategoryTheory.Sieve.arrows
sieve₁
I₁
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Y
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.CategoryStruct.comp
p₁
p₂
sieve₁_eq_pullback_sieve₁' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
sieve₁
CategoryTheory.Sieve.pullback
CategoryTheory.Limits.pullback
CategoryTheory.Limits.pullback.lift
sieve₁'
CategoryTheory.Sieve.ext
CategoryTheory.Limits.pullback.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.limit.lift_π
w
CategoryTheory.eq_whisker
sieve₁_inter 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.I₀
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieve₀
CategoryTheory.Presieve.instHasPullbacksOfArrowsOfHasPullback
CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieve₀_1
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.pullback.fst
sieve₁
inter
CategoryTheory.Limits.hasPullbackHorizPaste
Y
p₁
CategoryTheory.IsPullback.instHasPullbackFst
CategoryTheory.Limits.hasPullbackVertPaste
CategoryTheory.Limits.pullback.snd
CategoryTheory.Sieve.bind
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.pullback
CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieve₀
CategoryTheory.Presieve.instHasPullbacksOfArrowsOfHasPullback
CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieve₀_1
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Sieve.ext
CategoryTheory.Limits.hasPullbackHorizPaste
CategoryTheory.Limits.hasPullbackVertPaste
CategoryTheory.Presieve.instHasPullbacksOfHasPullbacks
CategoryTheory.IsPullback.instHasPullbackFst
CategoryTheory.Presieve.instHasPullbackOfHasPairwisePullbacksOfArrows
CategoryTheory.Presieve.instHasPairwisePullbacksOfHasPullbacks
w
CategoryTheory.Limits.pullback.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Limits.limit.lift_π_assoc
CategoryTheory.Limits.pullback.condition_assoc
Mathlib.Tactic.Reassoc.eq_whisker'
sieve₁_trivial 📖mathematicalsieve₁
trivial
Top.top
CategoryTheory.Sieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.Sieve.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Sieve.ext
CategoryTheory.Category.comp_id
sigmaOfIsColimit_Y 📖mathematicalY
sigmaOfIsColimit
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
I₁'
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
Y'
sigmaOfIsColimit_toPreZeroHypercover 📖mathematicaltoPreZeroHypercover
sigmaOfIsColimit
CategoryTheory.PreZeroHypercover.sigmaOfIsColimit
trivial_I₁ 📖mathematicalI₁
trivial
trivial_Y 📖mathematicalY
trivial
trivial_p₁ 📖mathematicalp₁
trivial
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
trivial_p₂ 📖mathematicalp₂
trivial
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
trivial_toPreZeroHypercover 📖mathematicaltoPreZeroHypercover
trivial
CategoryTheory.PreZeroHypercover.singleton
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
w 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Y
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
p₁
CategoryTheory.PreZeroHypercover.f
p₂

CategoryTheory.PreOneHypercover.Hom

Definitions

NameCategoryTheorems
comp 📖CompOp
6 mathmath: comp_s₁, comp_h₀, CategoryTheory.GrothendieckTopology.OneHypercover.exists_nonempty_homotopy, comp_s₀, CategoryTheory.PreOneHypercover.exists_nonempty_homotopy, comp_h₁
h₁ 📖CompOp
12 mathmath: ext_iff, CategoryTheory.GrothendieckTopology.OneHypercover.comp_h₁, w₁₁, CategoryTheory.PreOneHypercover.cylinderHom_h₁, w₁₂_assoc, id_h₁, w₁₂, comp_h₁, CategoryTheory.PreOneHypercover.id_h₁, w₁₁_assoc, CategoryTheory.GrothendieckTopology.OneHypercover.id_h₁, CategoryTheory.PreOneHypercover.comp_h₁
id 📖CompOp
4 mathmath: id_h₀, id_s₁, id_h₁, id_s₀
mapMultiforkOfIsLimit 📖CompOp
3 mathmath: CategoryTheory.PreOneHypercover.Homotopy.mapMultiforkOfIsLimit_eq, mapMultiforkOfIsLimit_ι_assoc, mapMultiforkOfIsLimit_ι
s₁ 📖CompOp
17 mathmath: comp_s₁, ext_iff, CategoryTheory.GrothendieckTopology.OneHypercover.comp_h₁, w₁₁, CategoryTheory.PreOneHypercover.id_s₁, CategoryTheory.PreOneHypercover.comp_s₁, CategoryTheory.GrothendieckTopology.OneHypercover.id_s₁, id_s₁, CategoryTheory.GrothendieckTopology.OneHypercover.comp_s₁, w₁₂_assoc, CategoryTheory.PreOneHypercover.interSnd_s₁, w₁₂, CategoryTheory.PreOneHypercover.cylinderHom_s₁, comp_h₁, CategoryTheory.PreOneHypercover.interFst_s₁, w₁₁_assoc, CategoryTheory.PreOneHypercover.comp_h₁
s₁' 📖CompOp
toHom 📖CompOp
46 mathmath: comp_s₁, ext_iff, CategoryTheory.GrothendieckTopology.OneHypercover.comp_h₁, CategoryTheory.PreOneHypercover.comp_s₀, CategoryTheory.PreOneHypercover.Homotopy.wl, w₁₁, CategoryTheory.PreOneHypercover.cylinder_X, CategoryTheory.PreOneHypercover.cylinderHom_h₁, comp_h₀, CategoryTheory.PreOneHypercover.Homotopy.wl_assoc, CategoryTheory.PreOneHypercover.id_h₀, comp_s₀, CategoryTheory.PreOneHypercover.interSnd_toHom, CategoryTheory.PreOneHypercover.cylinder_I₀, CategoryTheory.PreOneHypercover.interFst_toHom, CategoryTheory.PreOneHypercover.cylinder_f, CategoryTheory.PreOneHypercover.comp_s₁, CategoryTheory.PreOneHypercover.cylinder_I₁, CategoryTheory.PreOneHypercover.id_s₀, id_h₀, CategoryTheory.PreOneHypercover.sieve₀_cylinder, CategoryTheory.PreOneHypercover.oneToZero_map, CategoryTheory.GrothendieckTopology.OneHypercover.id_h₀, CategoryTheory.GrothendieckTopology.OneHypercover.id_s₀, CategoryTheory.GrothendieckTopology.OneHypercover.comp_s₁, w₁₂_assoc, CategoryTheory.PreOneHypercover.sieve₁'_cylinder, CategoryTheory.PreOneHypercover.toPullback_cylinder, CategoryTheory.GrothendieckTopology.OneHypercover.comp_h₀, w₁₂, CategoryTheory.PreOneHypercover.comp_h₀, CategoryTheory.PreOneHypercover.Homotopy.wr, CategoryTheory.GrothendieckTopology.OneHypercover.comp_s₀, CategoryTheory.PreOneHypercover.cylinder_p₁, mapMultiforkOfIsLimit_ι_assoc, CategoryTheory.PreOneHypercover.cylinder_p₂, CategoryTheory.PreOneHypercover.cylinderHom_s₁, comp_h₁, CategoryTheory.PreOneHypercover.cylinderHom_s₀, mapMultiforkOfIsLimit_ι, w₁₁_assoc, CategoryTheory.PreOneHypercover.Homotopy.wr_assoc, CategoryTheory.PreOneHypercover.comp_h₁, id_s₀, CategoryTheory.PreOneHypercover.cylinderHom_h₀, CategoryTheory.PreOneHypercover.cylinder_Y

Theorems

NameKindAssumesProvesValidatesDepends On
comp_h₀ 📖mathematicalCategoryTheory.PreZeroHypercover.Hom.h₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toHom
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.Hom.s₀
comp_h₁ 📖mathematicalh₁
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreOneHypercover.Y
CategoryTheory.PreZeroHypercover.Hom.s₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toHom
s₁
comp_s₀ 📖mathematicalCategoryTheory.PreZeroHypercover.Hom.s₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toHom
comp
comp_s₁ 📖mathematicals₁
comp
CategoryTheory.PreZeroHypercover.Hom.s₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toHom
ext 📖CategoryTheory.PreZeroHypercover.Hom.s₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toHom
CategoryTheory.PreZeroHypercover.Hom.h₀
s₁
h₁
ext_iff 📖mathematicalCategoryTheory.PreZeroHypercover.Hom.s₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toHom
CategoryTheory.PreZeroHypercover.Hom.h₀
s₁
h₁
ext
id_h₀ 📖mathematicalCategoryTheory.PreZeroHypercover.Hom.h₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toHom
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
id_h₁ 📖mathematicalh₁
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreOneHypercover.Y
id_s₀ 📖mathematicalCategoryTheory.PreZeroHypercover.Hom.s₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toHom
id
id_s₁ 📖mathematicals₁
id
mapMultiforkOfIsLimit_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.PreOneHypercover.multicospanShape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.PreOneHypercover.multicospanIndex
CategoryTheory.Limits.MulticospanIndex.left
mapMultiforkOfIsLimit
CategoryTheory.Limits.Multifork.ι
CategoryTheory.PreZeroHypercover.Hom.s₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toHom
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.PreZeroHypercover.X
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.PreZeroHypercover.Hom.h₀
CategoryTheory.Limits.Multifork.IsLimit.fac
mapMultiforkOfIsLimit_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.PreOneHypercover.multicospanShape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.PreOneHypercover.multicospanIndex
mapMultiforkOfIsLimit
CategoryTheory.Limits.MulticospanIndex.left
CategoryTheory.Limits.Multifork.ι
CategoryTheory.PreZeroHypercover.Hom.s₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toHom
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.PreZeroHypercover.X
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.PreZeroHypercover.Hom.h₀
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapMultiforkOfIsLimit_ι
w₁₁ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreOneHypercover.Y
CategoryTheory.PreZeroHypercover.Hom.s₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toHom
s₁
CategoryTheory.PreZeroHypercover.X
h₁
CategoryTheory.PreOneHypercover.p₁
CategoryTheory.PreZeroHypercover.Hom.h₀
w₁₁_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreOneHypercover.Y
CategoryTheory.PreZeroHypercover.Hom.s₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toHom
s₁
h₁
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreOneHypercover.p₁
CategoryTheory.PreZeroHypercover.Hom.h₀
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w₁₁
w₁₂ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreOneHypercover.Y
CategoryTheory.PreZeroHypercover.Hom.s₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toHom
s₁
CategoryTheory.PreZeroHypercover.X
h₁
CategoryTheory.PreOneHypercover.p₂
CategoryTheory.PreZeroHypercover.Hom.h₀
w₁₂_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreOneHypercover.Y
CategoryTheory.PreZeroHypercover.Hom.s₀
CategoryTheory.PreOneHypercover.toPreZeroHypercover
toHom
s₁
h₁
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreOneHypercover.p₂
CategoryTheory.PreZeroHypercover.Hom.h₀
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w₁₂

CategoryTheory.PreZeroHypercover

Definitions

NameCategoryTheorems
toPreOneHypercover 📖CompOp
8 mathmath: toPreOneHypercover_toPreZeroHypercover, toPreOneHypercover_p₁, toPreOneHypercover_I₁, CategoryTheory.Precoverage.ZeroHypercover.toOneHypercover_toPreOneHypercover, CategoryTheory.instHasPullbacksToPreOneHypercover, CategoryTheory.sieve₁'_toPreOneHypercover_eq_top, toPreOneHypercover_Y, toPreOneHypercover_p₂

Theorems

NameKindAssumesProvesValidatesDepends On
ext_of_isSeparatedFor 📖CategoryTheory.Presieve.IsSeparatedFor
presieve₀
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
X
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
f
CategoryTheory.Presieve.IsSeparatedFor.ext
toPreOneHypercover_I₁ 📖mathematicalHasPullbacksCategoryTheory.PreOneHypercover.I₁
toPreOneHypercover
toPreOneHypercover_Y 📖mathematicalHasPullbacksCategoryTheory.PreOneHypercover.Y
toPreOneHypercover
CategoryTheory.Limits.pullback
X
f
toPreOneHypercover_p₁ 📖mathematicalHasPullbacksCategoryTheory.PreOneHypercover.p₁
toPreOneHypercover
CategoryTheory.Limits.pullback.fst
X
f
toPreOneHypercover_p₂ 📖mathematicalHasPullbacksCategoryTheory.PreOneHypercover.p₂
toPreOneHypercover
CategoryTheory.Limits.pullback.snd
X
f
toPreOneHypercover_toPreZeroHypercover 📖mathematicalHasPullbacksCategoryTheory.PreOneHypercover.toPreZeroHypercover
toPreOneHypercover

CategoryTheory.Precoverage.ZeroHypercover

Definitions

NameCategoryTheorems
toOneHypercover 📖CompOp
1 mathmath: toOneHypercover_toPreOneHypercover

Theorems

NameKindAssumesProvesValidatesDepends On
toOneHypercover_toPreOneHypercover 📖mathematicalCategoryTheory.PreZeroHypercover.HasPullbacks
toPreZeroHypercover
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
CategoryTheory.Precoverage.toGrothendieck
toOneHypercover
CategoryTheory.PreZeroHypercover.toPreOneHypercover

---

← Back to Index