Documentation Verification Report

Zero

šŸ“ Source: Mathlib/CategoryTheory/Sites/Hypercover/Zero.lean

Statistics

MetricCount
DefinitionsPreZeroHypercover, HasPullbacks, comp, hā‚€, id, sā‚€, Iā‚€, X, add, bind, f, fromShrink, instCategory, instUniqueIā‚€Singleton, inter, interFst, interLift, interSnd, isoMk, map, presieveā‚€, pullbackCoverOfLeft, pullbackCoverOfLeftIsoPullback₁, pullbackCoverOfRight, pullbackCoverOfRightIsoPullbackā‚‚, pullbackIso, pullback₁, pullbackā‚‚, reindex, restrictIndex, restrictIndexHom, shrink, sieveā‚€, sigmaOfIsColimit, singleton, sum, sumInl, sumInr, sumLift, toShrink, RespectsIso, ZeroHypercover, restrictFun, add, bind, instCategory, inter, isoMk, map, pullbackCoverOfLeft, pullbackCoverOfRight, pullback₁, pullbackā‚‚, reindex, restrictIndexOfSmall, singleton, sum, toPreZeroHypercover, weaken, preZeroHypercover
60
Theoremscomp_hā‚€, comp_sā‚€, ext, ext', ext'_iff, ext_iff, id_hā‚€, id_sā‚€, sieveā‚€_le_sieveā‚€, wā‚€, wā‚€_assoc, add_Iā‚€, add_X_none, add_X_some, add_f_nome, add_f_some, bind_Iā‚€, bind_X, bind_f, comp_hā‚€, comp_sā‚€, ext, ext_iff, hom_inv_hā‚€, hom_inv_hā‚€_assoc, hom_inv_sā‚€_apply, id_hā‚€, id_sā‚€, inj_sigmaOfIsColimit_f, inj_sigmaOfIsColimit_f_assoc, instIsIsoHā‚€Hom, instIsIsoHā‚€Inv, interFst_hā‚€, interFst_sā‚€, interLift_hā‚€, interLift_sā‚€, interSnd_hā‚€, interSnd_sā‚€, inter_Iā‚€, inter_X, inter_def, inter_f, inv_hom_hā‚€, inv_hom_hā‚€_assoc, inv_hom_hā‚€_comp_f, inv_hom_hā‚€_comp_f_assoc, inv_hom_sā‚€_apply, inv_inv_hā‚€_comp_f, inv_inv_hā‚€_comp_f_assoc, isoMk_hom_hā‚€, isoMk_hom_sā‚€, isoMk_inv_hā‚€, isoMk_inv_sā‚€, map_Iā‚€, map_X, map_f, presieveā‚€_add, presieveā‚€_eq_presieveā‚€_iff, presieveā‚€_f, presieveā‚€_map, presieveā‚€_mem_iff_of_iso, presieveā‚€_mem_of_iso, presieveā‚€_pullback₁, presieveā‚€_reindex, presieveā‚€_restrictIndex_equiv, presieveā‚€_restrictIndex_le, presieveā‚€_shrink, presieveā‚€_singleton, presieveā‚€_sum, pullbackCoverOfLeft_Iā‚€, pullbackCoverOfLeft_X, pullbackCoverOfLeft_f, pullbackCoverOfRight_Iā‚€, pullbackCoverOfRight_X, pullbackCoverOfRight_f, pullbackIso_hom_hā‚€, pullbackIso_hom_sā‚€, pullbackIso_inv_hā‚€, pullbackIso_inv_sā‚€, pullback₁_Iā‚€, pullback₁_X, pullback₁_f, pullbackā‚‚_Iā‚€, pullbackā‚‚_X, pullbackā‚‚_f, reindex_Iā‚€, reindex_X, reindex_f, restrictIndexHom_hā‚€, restrictIndexHom_sā‚€, restrictIndex_Iā‚€, restrictIndex_X, restrictIndex_f, shrink_Iā‚€, shrink_X, shrink_eq_shrink_of_presieveā‚€_eq_presieveā‚€, shrink_f, sieveā‚€_eq_of_iso, sieveā‚€_f, sigmaOfIsColimit_Iā‚€, sigmaOfIsColimit_X, singleton_Iā‚€, singleton_X, singleton_f, sumInl_hā‚€, sumInl_sā‚€, sumInr_hā‚€, sumInr_sā‚€, sumLift_hā‚€, sumLift_sā‚€, sum_Iā‚€, sum_X, sum_X_inl, sum_X_inr, sum_f, sum_f_inl, sum_f_inr, of_forall_exists_iso, of_iso, inf, zeroHypercoverSmall, exists_restrictIndex_mem, memā‚€, add_toPreZeroHypercover, bind_toPreZeroHypercover, comp_hā‚€, comp_sā‚€, id_hā‚€, id_sā‚€, instHasPullbackFOfHasPullbacksPresieveā‚€, instHasPullbackFOfHasPullbacksPresieveā‚€_1, instHasPullbacksPresieveā‚€OfHasPullbacks, instSmall, instSmallOfSmallIā‚€, instSmallPullback₁, inter_toPreZeroHypercover, isoMk_hom, isoMk_inv, map_toPreZeroHypercover, memā‚€, presieveā‚€_mem_of_iso, pullbackCoverOfLeft_toPreZeroHypercover, pullbackCoverOfRight_toPreZeroHypercover, pullback₁_toPreZeroHypercover, pullbackā‚‚_toPreZeroHypercover, reindex_toPreZeroHypercover, restrictIndexOfSmall_toPreZeroHypercover, singleton_toPreZeroHypercover, sum_toPreZeroHypercover, weaken_toPreZeroHypercover, instRespectsIsoOfIsStableUnderBaseChange, instSmallComap, instSmallOfSmall, le_of_zeroHypercover, mem_iff_exists_zeroHypercover, exists_eq_preZeroHypercover, preZeroHypercover_Iā‚€, preZeroHypercover_X, preZeroHypercover_f, presieveā‚€_preZeroHypercover
160
Total220

CategoryTheory

Definitions

NameCategoryTheorems
PreZeroHypercover šŸ“–CompData
33 mathmath: PreZeroHypercover.isoMk_hom_hā‚€, PreZeroHypercover.inv_hom_hā‚€, PreZeroHypercover.inv_hom_hā‚€_comp_f_assoc, PreZeroHypercover.inv_hom_sā‚€_apply, PreOneHypercover.oneToZero_obj, AlgebraicGeometry.Scheme.Cover.comp_app, PreZeroHypercover.instIsIsoHā‚€Hom, Precoverage.ZeroHypercover.isoMk_hom, PreZeroHypercover.inv_hom_hā‚€_comp_f, PreZeroHypercover.inv_inv_hā‚€_comp_f, AlgebraicGeometry.Scheme.Cover.comp_idx_apply, PreZeroHypercover.isoMk_hom_sā‚€, AlgebraicGeometry.Scheme.Cover.id_idx_apply, PreZeroHypercover.pullbackIso_hom_hā‚€, PreZeroHypercover.inv_hom_hā‚€_assoc, PreZeroHypercover.pullbackIso_hom_sā‚€, PreZeroHypercover.comp_sā‚€, AlgebraicGeometry.Scheme.Cover.id_app, AlgebraicGeometry.Scheme.isClosedUnderIsomorphisms_quasiCompactCover, Precoverage.ZeroHypercover.isoMk_inv, PreZeroHypercover.hom_inv_hā‚€_assoc, PreZeroHypercover.instIsIsoHā‚€Inv, PreZeroHypercover.inv_inv_hā‚€_comp_f_assoc, PreZeroHypercover.hom_inv_sā‚€_apply, PreOneHypercover.oneToZero_map, PreZeroHypercover.comp_hā‚€, PreZeroHypercover.hom_inv_hā‚€, PreZeroHypercover.id_hā‚€, PreZeroHypercover.pullbackIso_inv_hā‚€, PreZeroHypercover.isoMk_inv_hā‚€, PreZeroHypercover.isoMk_inv_sā‚€, PreZeroHypercover.id_sā‚€, PreZeroHypercover.pullbackIso_inv_sā‚€

CategoryTheory.PreZeroHypercover

Definitions

NameCategoryTheorems
HasPullbacks šŸ“–MathDef—
Iā‚€ šŸ“–CompOp
189 mathmath: isoMk_hom_hā‚€, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj_assoc, AlgebraicGeometry.Scheme.coverOfIsIso_Iā‚€, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp_Iā‚€, sum_f_inr, AlgebraicGeometry.Scheme.AffineCover.cover_Iā‚€, AlgebraicGeometry.Scheme.affineBasisCover_is_basis, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_f, AlgebraicGeometry.Scheme.mem_grothendieckTopology_iff, CategoryTheory.PreOneHypercover.forkOfIsColimit_pt, AlgebraicGeometry.Scheme.Cover.iUnion_range, CategoryTheory.PreOneHypercover.p₁_sigmaOfIsColimit_assoc, CategoryTheory.PreOneHypercover.inter_I₁, sigmaOfIsColimit_X, AlgebraicGeometry.Scheme.Hom.iUnion_support_ker_openCover_map_comp, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_Iā‚€, CategoryTheory.PreOneHypercover.multicospanIndex_fst, sum_f_inl, CategoryTheory.PreOneHypercover.cylinder_X, AlgebraicGeometry.Scheme.Pullback.openCoverOfRight_Iā‚€, CategoryTheory.PreOneHypercover.cylinderHom_h₁, AlgebraicGeometry.Scheme.Cover.functorOfLocallyDirected_obj, singleton_Iā‚€, AlgebraicGeometry.Scheme.openCoverOfIsOpenCover_Iā‚€, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_Iā‚€, AlgebraicGeometry.Scheme.affineOpenCover_Iā‚€, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_Iā‚€, CategoryTheory.PreOneHypercover.map_Iā‚€, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_pullbackHom, AlgebraicGeometry.Scheme.affineOpenCover_idx, map_Iā‚€, CategoryTheory.PreOneHypercover.multicospanIndex_right, reindex_Iā‚€, interLift_hā‚€, AlgebraicGeometry.Scheme.Cover.mkOfCovers_Iā‚€, add_f_nome, CategoryTheory.PreOneHypercover.multicospanShape_fst, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionMap_id, restrictIndex_X, interLift_sā‚€, CategoryTheory.Presieve.preZeroHypercover_Iā‚€, CategoryTheory.PreOneHypercover.multicospanIndex_snd, AlgebraicGeometry.Scheme.Cover.coconeOfLocallyDirected_ι, AlgebraicGeometry.Scheme.OpenCover.isOpenCover_opensRange, sum_X_inl, inj_sigmaOfIsColimit_f_assoc, AlgebraicGeometry.QuasiCompactCover.isCompactOpenCovered_of_isCompact, reindex_f, isoMk_hom_sā‚€, AlgebraicGeometry.Scheme.Cover.trans_id, pullbackā‚‚_Iā‚€, AlgebraicGeometry.Scheme.directedAffineCover_Iā‚€, AlgebraicGeometry.Scheme.Pullback.gluing_J, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.equifibered, add_X_none, AlgebraicGeometry.Scheme.Cover.instIsLocallyDirectedIā‚€CompFunctorOfLocallyDirectedForget, reindex_X, AlgebraicGeometry.Scheme.OpenCover.iSup_opensRange, CategoryTheory.PreOneHypercover.p₁_sigmaOfIsColimit, AlgebraicGeometry.Scheme.exists_cover_of_mem_pretopology, AlgebraicGeometry.Scheme.Hom.iInf_ker_openCover_map_comp, AlgebraicGeometry.Scheme.Cover.gluedCover_J, sumLift_sā‚€, CategoryTheory.PreOneHypercover.multicospanShape_L, pullbackCoverOfLeft_Iā‚€, AlgebraicGeometry.Scheme.Cover.toSigma_sā‚€, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_pullbackHom_assoc, inter_f, interFst_sā‚€, pullback₁_Iā‚€, CategoryTheory.PreOneHypercover.cylinder_Iā‚€, CategoryTheory.PreOneHypercover.inter_pā‚‚, bind_f, AlgebraicGeometry.Scheme.Cover.LocallyDirected.trans_comp, AlgebraicGeometry.Scheme.Cover.functorOfLocallyDirected_map, sum_X, CategoryTheory.PreOneHypercover.Y'_apply, pullbackIso_hom_sā‚€, interSnd_hā‚€, AlgebraicGeometry.Scheme.Cover.sigma_X, add_Iā‚€, AlgebraicGeometry.Scheme.Cover.nonempty_of_nonempty, CategoryTheory.PreOneHypercover.cylinder_f, pullbackCoverOfRight_Iā‚€, AlgebraicGeometry.instSurjectiveDescIā‚€SchemeF, add_X_some, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_Iā‚€, AlgebraicGeometry.Scheme.Cover.ulift_Iā‚€, presieveā‚€_pullback₁, CategoryTheory.PreOneHypercover.cylinder_I₁, CategoryTheory.Precoverage.mem_iff_exists_zeroHypercover, AlgebraicGeometry.Scheme.IsLocallyDirected.openCover_Iā‚€, CategoryTheory.Functor.PreOneHypercoverDenseData.toPreOneHypercover_Iā‚€, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac', AlgebraicGeometry.Scheme.Hom.iInf_ker_openCover_map_comp_apply, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac'_assoc, inter_X, AlgebraicGeometry.Scheme.Cover.toPresieveOver_le_arrows_iff, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_f, AlgebraicGeometry.Scheme.Cover.Hom.sigma_hā‚€, AlgebraicGeometry.Scheme.Cover.overEquiv_generate_toPresieveOver_eq_ofArrows, CategoryTheory.PreOneHypercover.sieveā‚€_cylinder, AlgebraicGeometry.Scheme.Cover.LocallyDirected.trans_id, AlgebraicGeometry.Scheme.Cover.toSigma_hā‚€, restrictIndex_Iā‚€, AlgebraicGeometry.Scheme.directedAffineCover_trans, sumInl_sā‚€, inj_sigmaOfIsColimit_f, inter_def, AlgebraicGeometry.Scheme.AffineZariskiSite.opensRange_relativeGluingData_map, CategoryTheory.GrothendieckTopology.OneHypercover.arrowsCompatible, CategoryTheory.PreOneHypercover.multicospanShape_snd, AlgebraicGeometry.Scheme.Cover.coconeOfLocallyDirected_pt, ext_iff, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionMap_comp, bind_X, AlgebraicGeometry.sigmaOpenCover_Iā‚€, AlgebraicGeometry.Scheme.Cover.Hom.sigma_sā‚€, AlgebraicGeometry.Scheme.Cover.sigma_Iā‚€, AlgebraicGeometry.Scheme.Cover.pushforwardIso_Iā‚€, AlgebraicGeometry.Scheme.Cover.trans_comp, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_map, CategoryTheory.PreOneHypercover.inter_Y, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_Iā‚€, Hom.id_sā‚€, sumLift_hā‚€, AlgebraicGeometry.QuasiCompactCover.isCompactOpenCovered_of_isAffineOpen, AlgebraicGeometry.Scheme.Hom.cover_Iā‚€, CategoryTheory.PreOneHypercover.sieve₁'_cylinder, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_map_assoc, AlgebraicGeometry.Scheme.AffineOpenCover.openCover_Iā‚€, AlgebraicGeometry.Scheme.exists_cover_of_mem_grothendieckTopology, AlgebraicGeometry.Scheme.OpenCover.restrict_Iā‚€, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft_Iā‚€, CategoryTheory.PreOneHypercover.interSnd_s₁, CategoryTheory.PreOneHypercover.toPullback_cylinder, AlgebraicGeometry.Scheme.GlueData.oneHypercover_Iā‚€, AlgebraicGeometry.Scheme.AffineZariskiSite.PreservesLocalization.opensRange_map, Hom.comp_hā‚€, interFst_hā‚€, CategoryTheory.PreOneHypercover.inter_p₁, AlgebraicGeometry.Scheme.affineBasisCover_map_range, AlgebraicGeometry.Scheme.grothendieckTopology_cover, AlgebraicGeometry.Scheme.Hom.instIsLocallyDirectedIā‚€DirectedCoverCompFunctorNormalizationGlueDataForget, sum_Iā‚€, AlgebraicGeometry.Scheme.mem_pretopology_iff, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp'_Iā‚€, AlgebraicGeometry.IsAffineOpen.isCompactOpenCovered, bind_Iā‚€, AlgebraicGeometry.Scheme.GlueData.openCover_Iā‚€, sumInr_sā‚€, CategoryTheory.PreOneHypercover.cylinder_p₁, sigmaOfIsColimit_Iā‚€, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_map, CategoryTheory.PreOneHypercover.cylinder_pā‚‚, CategoryTheory.PreOneHypercover.cylinderHom_s₁, AlgebraicGeometry.Scheme.Cover.intersectionOfLocallyDirected_f, AlgebraicGeometry.quasiCompactCover_iff, isoMk_inv_hā‚€, inter_Iā‚€, AlgebraicGeometry.Scheme.Cover.mem_pretopology, CategoryTheory.PreOneHypercover.interFst_s₁, isoMk_inv_sā‚€, Hom.comp_sā‚€, presieveā‚€_restrictIndex_equiv, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj, AlgebraicGeometry.Scheme.OpenCover.instIsOpenImmersionMapIā‚€FunctorOfLocallyDirected, AlgebraicGeometry.Scheme.Cover.functorOfLocallyDirectedHomBase_app, CategoryTheory.PreOneHypercover.cylinderHom_sā‚€, AlgebraicGeometry.Scheme.AffineZariskiSite.PreservesLocalization.colimitDesc_preimage, CategoryTheory.PreOneHypercover.pā‚‚_sigmaOfIsColimit, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_obj, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_X, add_f_some, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.relativeGluingData_natTrans_app, shrink_Iā‚€, AlgebraicGeometry.Scheme.pretopology_cover, AlgebraicGeometry.Scheme.AffineZariskiSite.directedCover_Iā‚€, CategoryTheory.PreOneHypercover.pā‚‚_sigmaOfIsColimit_assoc, sum_f, AlgebraicGeometry.Scheme.Cover.sigma_f, sum_X_inr, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.instIsOpenImmersionMapIā‚€Functor, CategoryTheory.PreOneHypercover.cylinderHom_hā‚€, AlgebraicGeometry.Scheme.Pullback.diagonalCover_map, CategoryTheory.PreOneHypercover.cylinder_Y, AlgebraicGeometry.Scheme.Cover.mem_grothendieckTopology, pullbackIso_inv_sā‚€, interSnd_sā‚€
X šŸ“–CompOp
258 mathmath: isoMk_hom_hā‚€, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj_assoc, inv_hom_hā‚€, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.cover_X, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_X, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_snd_assoc, AlgebraicGeometry.Scheme.Cover.LocallyDirected.directed, AlgebraicGeometry.instIsLocallyArtinianXScheme, AlgebraicGeometry.Scheme.affineBasisCover_is_basis, CategoryTheory.MorphismProperty.IsLocalAtTarget.iff_of_zeroHypercover, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_f, AlgebraicGeometry.Scheme.mem_grothendieckTopology_iff, CategoryTheory.PreOneHypercover.forkOfIsColimit_pt, AlgebraicGeometry.Scheme.Cover.iUnion_range, CategoryTheory.PreOneHypercover.Homotopy.wl, inv_hom_hā‚€_comp_f_assoc, CategoryTheory.PreOneHypercover.p₁_sigmaOfIsColimit_assoc, CategoryTheory.PreOneHypercover.Hom.w₁₁, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle_fst, AlgebraicGeometry.sigmaOpenCover_X, sigmaOfIsColimit_X, AlgebraicGeometry.Scheme.Hom.iUnion_support_ker_openCover_map_comp, CategoryTheory.PreOneHypercover.multicospanIndex_fst, AlgebraicGeometry.Scheme.OpenCover.finiteSubcover_f, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_f, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_X, CategoryTheory.PreOneHypercover.cylinder_X, CategoryTheory.PreOneHypercover.cylinderHom_h₁, AlgebraicGeometry.ExistsHomHomCompEqCompAux.exists_eq, AlgebraicGeometry.Scheme.Cover.functorOfLocallyDirected_obj, CategoryTheory.MorphismProperty.iff_of_zeroHypercover_target, CategoryTheory.PreOneHypercover.Hom.comp_hā‚€, AlgebraicGeometry.ExistsHomHomCompEqCompAux.hš’°S, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle, AlgebraicGeometry.Scheme.Cover.gluedCover_t, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.toBase_preimage_eq_opensRange_ι, AlgebraicGeometry.Scheme.Cover.gluedCover_U, CategoryTheory.GrothendieckTopology.OneHypercover.multiforkLift_map, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_pullbackHom, CategoryTheory.MorphismProperty.IsLocalAtTarget.pullbackSnd, AlgebraicGeometry.Scheme.Cover.comp_app, instIsIsoHā‚€Hom, CategoryTheory.PreOneHypercover.map_X, AlgebraicGeometry.Scheme.affineOpenCover_idx, AlgebraicGeometry.Scheme.Hom.fromNormalization_preimage, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.cocone_ι_transitionMap, AlgebraicGeometry.Scheme.presieveā‚€_mem_precoverage_iff, inv_hom_hā‚€_comp_f, toPreOneHypercover_p₁, inv_inv_hā‚€_comp_f, AlgebraicGeometry.Scheme.Pullback.left_affine_comp_pullback_hasPullback, AlgebraicGeometry.IsLocalAtSource.iff_of_openCover, CategoryTheory.GrothendieckTopology.OneHypercover.mem_sieve₁', singleton_X, restrictIndexHom_hā‚€, Hom.id_hā‚€, CategoryTheory.PreOneHypercover.Homotopy.wl_assoc, CategoryTheory.Precoverage.ZeroHypercover.id_hā‚€, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionCocone_pt, AlgebraicGeometry.instIsAffineXSchemeAffineCover, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionMap_id, restrictIndex_X, AlgebraicGeometry.Scheme.Hom.cover_X, CategoryTheory.PreOneHypercover.multifork_ι, CategoryTheory.PreOneHypercover.id_hā‚€, AlgebraicGeometry.Scheme.Cover.gluedCover_V, Hom.wā‚€, CategoryTheory.PreOneHypercover.multicospanIndex_snd, AlgebraicGeometry.Scheme.OpenCover.isOpenCover_opensRange, AlgebraicGeometry.Scheme.Cover.ulift_X, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_fst, AlgebraicGeometry.Scheme.Cover.covers, CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveā‚€, sum_X_inl, AlgebraicGeometry.QuasiCompactCover.exists_hom, CategoryTheory.PreOneHypercover.sieve₁'_eq_sieve₁, inj_sigmaOfIsColimit_f_assoc, AlgebraicGeometry.QuasiCompactCover.isCompactOpenCovered_of_isCompact, CategoryTheory.PreOneHypercover.map_p₁, CategoryTheory.Presieve.preZeroHypercover_X, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_fst, AlgebraicGeometry.Scheme.isAffine_affineBasisCover, AlgebraicGeometry.Scheme.Cover.trans_id, AlgebraicGeometry.sourceLocalClosure.property_coverMap_comp, AlgebraicGeometry.Scheme.Cover.exists_lift_trans_eq, CategoryTheory.MorphismProperty.iff_of_zeroHypercover_source, CategoryTheory.MorphismProperty.IsLocalAtSource.comp, AlgebraicGeometry.Scheme.Cover.Hom.w, add_X_none, reindex_X, AlgebraicGeometry.ExistsHomHomCompEqCompAux.hš’°X, AlgebraicGeometry.Scheme.OpenCover.restrict_f, AlgebraicGeometry.Scheme.OpenCover.iSup_opensRange, AlgebraicGeometry.Scheme.Cover.mkOfCovers_X, Hom.ext'_iff, CategoryTheory.PreOneHypercover.p₁_sigmaOfIsColimit, AlgebraicGeometry.Scheme.exists_cover_of_mem_pretopology, map_X, AlgebraicGeometry.Scheme.Pullback.openCoverOfRight_f, AlgebraicGeometry.Scheme.Hom.iInf_ker_openCover_map_comp, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionCocone_ι_app, TopCat.isOpenEmbedding_f_zeroHypercover, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle_snd, AlgebraicGeometry.Scheme.Cover.trans_map, AlgebraicGeometry.Scheme.openCoverOfIsOpenCover_X, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_pullbackHom_assoc, AlgebraicGeometry.QuasiCompactCover.instPullback₁Scheme, inv_hom_hā‚€_assoc, shrink_X, map_f, AlgebraicGeometry.Scheme.GlueData.openCover_X, bind_f, AlgebraicGeometry.Scheme.Cover.LocallyDirected.trans_comp, sum_X, AlgebraicGeometry.Scheme.directedAffineCover_X, AlgebraicGeometry.Scheme.Cover.property_trans, CategoryTheory.PreOneHypercover.multicospanIndex_left, AlgebraicGeometry.Scheme.Cover.sigma_X, AlgebraicGeometry.Scheme.Cover.id_app, CategoryTheory.MorphismProperty.IsLocalAtSource.iff_of_zeroHypercover, AlgebraicGeometry.Scheme.AffineZariskiSite.directedCover_X, AlgebraicGeometry.Scheme.OpenCover.instIsOpenImmersionTrans, AlgebraicGeometry.instSurjectiveDescIā‚€SchemeF, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.cocone_ι_transitionMap_assoc, add_X_some, CategoryTheory.Precoverage.mem_iff_exists_zeroHypercover, AlgebraicGeometry.Scheme.Pullback.openCoverOfRight_X, hom_inv_hā‚€_assoc, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_fst_assoc, CategoryTheory.PreOneHypercover.w, instIsIsoHā‚€Inv, CategoryTheory.PreOneHypercover.Hom.id_hā‚€, inv_inv_hā‚€_comp_f_assoc, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac', AlgebraicGeometry.IsZariskiLocalAtSource.iff_of_openCover, AlgebraicGeometry.Scheme.Hom.iInf_ker_openCover_map_comp_apply, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac'_assoc, AlgebraicGeometry.Scheme.Cover.pushforwardIso_f, AlgebraicGeometry.Scheme.IsLocallyDirected.openCover_X, CategoryTheory.Precoverage.ZeroHypercover.bind_toPreZeroHypercover, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_f, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_X, AlgebraicGeometry.Scheme.Cover.toPresieveOver_le_arrows_iff, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_f, AlgebraicGeometry.Scheme.Cover.gluedCover_f, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_X, presieveā‚€_f, AlgebraicGeometry.Scheme.Cover.Hom.sigma_hā‚€, AlgebraicGeometry.Scheme.Cover.overEquiv_generate_toPresieveOver_eq_ofArrows, CategoryTheory.PreOneHypercover.sieveā‚€_cylinder, AlgebraicGeometry.Scheme.Cover.LocallyDirected.trans_id, CategoryTheory.Functor.PreOneHypercoverDenseData.toPreOneHypercover_X, comp_hā‚€, AlgebraicGeometry.Scheme.Cover.toSigma_hā‚€, AlgebraicGeometry.IsLocalAtTarget.iff_of_openCover, CategoryTheory.GrothendieckTopology.OneHypercover.id_hā‚€, AlgebraicGeometry.Scheme.coverOfIsIso_X, inj_sigmaOfIsColimit_f, AlgebraicGeometry.Scheme.Cover.LocallyDirected.property_trans, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.prop_trans, CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveā‚€_1, sumInr_hā‚€, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_snd_assoc, AlgebraicGeometry.Scheme.Cover.exists_eq, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.trans_app_left, ext_iff, AlgebraicGeometry.Scheme.AffineCover.cover_X, hom_inv_hā‚€, AlgebraicGeometry.Scheme.affineBasisCover_obj, id_hā‚€, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionMap_comp, bind_X, AlgebraicGeometry.Scheme.instEtaleF, CategoryTheory.PreOneHypercover.Hom.w₁₂_assoc, Hom.wā‚€_assoc, AlgebraicGeometry.instIsAffineXSchemeCoverOfIsIsoIsOpenImmersionId, AlgebraicGeometry.Scheme.OpenCover.finiteSubcover_X, CategoryTheory.PreOneHypercover.sieve₁_apply, AlgebraicGeometry.Scheme.Hom.ι_fromNormalization_assoc, AlgebraicGeometry.Scheme.Cover.trans_comp, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_map, AlgebraicGeometry.Scheme.GlueData.oneHypercover_X, sumLift_hā‚€, AlgebraicGeometry.QuasiCompactCover.isCompactOpenCovered_of_isAffineOpen, CategoryTheory.PreOneHypercover.sieve₁'_cylinder, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_snd, AlgebraicGeometry.IsZariskiLocalAtTarget.iff_of_openCover, AlgebraicGeometry.instIsLocallyNoetherianXScheme, CategoryTheory.sieve₁'_toPreOneHypercover_eq_top, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_map_assoc, AlgebraicGeometry.isLocallyArtinian_iff_openCover, AlgebraicGeometry.Scheme.exists_cover_of_mem_grothendieckTopology, AlgebraicGeometry.Scheme.instIsOpenImmersionF, sumInl_hā‚€, CategoryTheory.PreOneHypercover.toPullback_cylinder, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_f, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_snd, sieveā‚€_f, AlgebraicGeometry.Scheme.Cover.pushforwardIso_X, CategoryTheory.ObjectProperty.iff_of_zeroHypercover, CategoryTheory.GrothendieckTopology.OneHypercover.comp_hā‚€, Hom.comp_hā‚€, CategoryTheory.PreOneHypercover.Hom.w₁₂, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.preimage_toBase_eq_range_ι, AlgebraicGeometry.Scheme.affineBasisCover_map_range, AlgebraicGeometry.Scheme.Cover.map_prop, AlgebraicGeometry.Scheme.Cover.LocallyDirected.w, CategoryTheory.PreOneHypercover.comp_hā‚€, AlgebraicGeometry.Scheme.grothendieckTopology_cover, AlgebraicGeometry.Scheme.Cover.Over.isOver_map, CategoryTheory.PreOneHypercover.Homotopy.wr, AlgebraicGeometry.Scheme.Hom.ι_fromNormalization, AlgebraicGeometry.Scheme.mem_pretopology_iff, AlgebraicGeometry.IsAffineOpen.isCompactOpenCovered, bind_Iā‚€, AlgebraicGeometry.isLocallyNoetherian_iff_openCover, CategoryTheory.PreOneHypercover.cylinder_p₁, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_map, CategoryTheory.PreOneHypercover.Hom.mapMultiforkOfIsLimit_ι_assoc, CategoryTheory.PreOneHypercover.cylinder_pā‚‚, TopCat.exists_mem_zeroHypercover_range, CategoryTheory.PreOneHypercover.map_f, AlgebraicGeometry.Scheme.Cover.intersectionOfLocallyDirected_f, AlgebraicGeometry.quasiCompactCover_iff, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft_f, AlgebraicGeometry.Scheme.OpenCover.restrict_X, isoMk_inv_hā‚€, AlgebraicGeometry.Scheme.Cover.mem_pretopology, toPreOneHypercover_Y, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_fst_assoc, CategoryTheory.PreOneHypercover.Hom.mapMultiforkOfIsLimit_ι, AlgebraicGeometry.Scheme.AffineZariskiSite.PreservesLocalization.colimitDesc_preimage, CategoryTheory.PreOneHypercover.pā‚‚_sigmaOfIsColimit, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_obj, CategoryTheory.PreOneHypercover.Hom.w₁₁_assoc, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_X, CategoryTheory.GrothendieckTopology.OneHypercover.multiforkLift_map_assoc, shrink_Iā‚€, AlgebraicGeometry.Scheme.pretopology_cover, AlgebraicGeometry.Scheme.isAffine_affineCover, CategoryTheory.PreOneHypercover.pā‚‚_sigmaOfIsColimit_assoc, AlgebraicGeometry.Scheme.AffineOpenCover.openCover_X, AlgebraicGeometry.QuasiCompactCover.exists_isAffineOpen_of_isCompact, sum_f, CategoryTheory.PreOneHypercover.Homotopy.wr_assoc, CategoryTheory.PreOneHypercover.map_pā‚‚, CategoryTheory.Precoverage.ZeroHypercover.comp_hā‚€, toPreOneHypercover_pā‚‚, AlgebraicGeometry.Scheme.Cover.sigma_f, sum_X_inr, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft_X, CategoryTheory.PreOneHypercover.cylinderHom_hā‚€, AlgebraicGeometry.QuasiCompactCover.instPullbackā‚‚Scheme, AlgebraicGeometry.Scheme.Pullback.diagonalCover_map, CategoryTheory.PreOneHypercover.cylinder_Y, AlgebraicGeometry.Scheme.Cover.mem_grothendieckTopology, AlgebraicGeometry.Scheme.isAffine_affineOpenCover
add šŸ“–CompOp
8 mathmath: add_f_nome, add_X_none, add_Iā‚€, add_X_some, CategoryTheory.Precoverage.ZeroHypercover.add_toPreZeroHypercover, AlgebraicGeometry.Scheme.Cover.add_toPreZeroHypercover, add_f_some, presieveā‚€_add
bind šŸ“–CompOp
11 mathmath: interLift_hā‚€, CategoryTheory.PreOneHypercover.inter_pā‚‚, bind_f, interSnd_hā‚€, AlgebraicGeometry.QuasiCompactCover.instBindScheme, CategoryTheory.Precoverage.ZeroHypercover.bind_toPreZeroHypercover, inter_def, bind_X, interFst_hā‚€, CategoryTheory.PreOneHypercover.inter_p₁, bind_Iā‚€
f šŸ“–CompOp
207 mathmath: CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj_assoc, sum_f_inr, AlgebraicGeometry.Scheme.AffineOpenCover.openCover_f, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_X, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_snd_assoc, AlgebraicGeometry.Scheme.Cover.LocallyDirected.directed, AlgebraicGeometry.Scheme.affineBasisCover_is_basis, CategoryTheory.MorphismProperty.IsLocalAtTarget.iff_of_zeroHypercover, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_f, AlgebraicGeometry.Scheme.mem_grothendieckTopology_iff, AlgebraicGeometry.Scheme.Cover.iUnion_range, inv_hom_hā‚€_comp_f_assoc, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle_fst, AlgebraicGeometry.Scheme.Hom.iUnion_support_ker_openCover_map_comp, sum_f_inl, AlgebraicGeometry.Scheme.OpenCover.finiteSubcover_f, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_f, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_X, CategoryTheory.PreOneHypercover.cylinderHom_h₁, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd_assoc, AlgebraicGeometry.ExistsHomHomCompEqCompAux.exists_eq, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.isPullback, CategoryTheory.MorphismProperty.iff_of_zeroHypercover_target, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle, AlgebraicGeometry.Scheme.Cover.gluedCover_t, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.toBase_preimage_eq_opensRange_ι, CategoryTheory.GrothendieckTopology.OneHypercover.multiforkLift_map, AlgebraicGeometry.Scheme.OpenCover.map_glueMorphismsOfLocallyDirected_assoc, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_pullbackHom, CategoryTheory.MorphismProperty.IsLocalAtTarget.pullbackSnd, AlgebraicGeometry.Scheme.affineOpenCover_idx, AlgebraicGeometry.Scheme.Hom.fromNormalization_preimage, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.cocone_ι_transitionMap, AlgebraicGeometry.Scheme.presieveā‚€_mem_precoverage_iff, inv_hom_hā‚€_comp_f, toPreOneHypercover_p₁, AlgebraicGeometry.Scheme.OpenCover.map_glueMorphismsOfLocallyDirected, inv_inv_hā‚€_comp_f, AlgebraicGeometry.Scheme.Pullback.left_affine_comp_pullback_hasPullback, AlgebraicGeometry.IsLocalAtSource.iff_of_openCover, CategoryTheory.GrothendieckTopology.OneHypercover.mem_sieve₁', AlgebraicGeometry.Scheme.Hom.ι_toNormalization, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst_assoc, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp_f, add_f_nome, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionCocone_pt, AlgebraicGeometry.Scheme.GlueData.openCover_f, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionMap_id, AlgebraicGeometry.Scheme.directedAffineCover_f, CategoryTheory.PreOneHypercover.multifork_ι, AlgebraicGeometry.Scheme.Cover.gluedCover_V, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_f, AlgebraicGeometry.HasAffineProperty.iff_of_openCover, Hom.wā‚€, AlgebraicGeometry.Scheme.Cover.ι_fromGlued_assoc, AlgebraicGeometry.Scheme.OpenCover.isOpenCover_opensRange, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.ι_toBase, AlgebraicGeometry.Scheme.openCoverOfIsOpenCover_f, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_fst, AlgebraicGeometry.Scheme.Cover.covers, CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveā‚€, AlgebraicGeometry.Scheme.IsLocallyDirected.openCover_f, CategoryTheory.PreOneHypercover.sieve₁'_eq_sieve₁, inj_sigmaOfIsColimit_f_assoc, AlgebraicGeometry.QuasiCompactCover.isCompactOpenCovered_of_isCompact, reindex_f, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_fst, AlgebraicGeometry.sourceLocalClosure.property_coverMap_comp, AlgebraicGeometry.Scheme.Cover.exists_lift_trans_eq, CategoryTheory.MorphismProperty.iff_of_zeroHypercover_source, CategoryTheory.MorphismProperty.IsLocalAtSource.comp, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.ι_toBase_assoc, AlgebraicGeometry.Scheme.Cover.Hom.w, CategoryTheory.Presieve.preZeroHypercover_f, AlgebraicGeometry.ExistsHomHomCompEqCompAux.hš’°X, AlgebraicGeometry.Scheme.OpenCover.restrict_f, AlgebraicGeometry.Scheme.OpenCover.iSup_opensRange, CategoryTheory.GrothendieckTopology.OneHypercover.f_glueMorphisms, AlgebraicGeometry.Scheme.exists_cover_of_mem_pretopology, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_openCover_map, AlgebraicGeometry.Scheme.Pullback.openCoverOfRight_f, AlgebraicGeometry.Scheme.Hom.iInf_ker_openCover_map_comp, AlgebraicGeometry.Scheme.AffineCover.cover_f, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionCocone_ι_app, TopCat.isOpenEmbedding_f_zeroHypercover, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle_snd, AlgebraicGeometry.Scheme.Cover.trans_map, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_pullbackHom_assoc, AlgebraicGeometry.QuasiCompactCover.instPullback₁Scheme, singleton_f, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp'_X, map_f, bind_f, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp'_f, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι_assoc, CategoryTheory.PreOneHypercover.cylinder_f, AlgebraicGeometry.Scheme.Hom.cover_f, CategoryTheory.MorphismProperty.IsLocalAtSource.iff_of_zeroHypercover, AlgebraicGeometry.Scheme.Cover.ulift_f, AlgebraicGeometry.instSurjectiveDescIā‚€SchemeF, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.cocone_ι_transitionMap_assoc, CategoryTheory.Precoverage.mem_iff_exists_zeroHypercover, AlgebraicGeometry.Scheme.Pullback.openCoverOfRight_X, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_fst_assoc, AlgebraicGeometry.Scheme.AffineZariskiSite.directedCover_f, CategoryTheory.PreOneHypercover.w, inv_inv_hā‚€_comp_f_assoc, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac', AlgebraicGeometry.IsZariskiLocalAtSource.iff_of_openCover, AlgebraicGeometry.Scheme.Hom.iInf_ker_openCover_map_comp_apply, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff.fac'_assoc, AlgebraicGeometry.Scheme.Cover.pushforwardIso_f, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.cover_f, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_f, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_X, AlgebraicGeometry.Scheme.Cover.toPresieveOver_le_arrows_iff, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_f, AlgebraicGeometry.Scheme.Cover.gluedCover_f, AlgebraicGeometry.Scheme.Hom.ι_toNormalization_assoc, presieveā‚€_f, AlgebraicGeometry.Scheme.Cover.overEquiv_generate_toPresieveOver_eq_ofArrows, CategoryTheory.PreOneHypercover.sieveā‚€_cylinder, restrictIndex_f, AlgebraicGeometry.IsLocalAtTarget.iff_of_openCover, inj_sigmaOfIsColimit_f, CategoryTheory.Functor.PreOneHypercoverDenseData.toPreOneHypercover_f, CategoryTheory.GrothendieckTopology.OneHypercover.f_glueMorphisms_assoc, CategoryTheory.GrothendieckTopology.OneHypercover.arrowsCompatible, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp_X, CategoryTheory.Precoverage.ZeroHypercover.instHasPullbackFOfHasPullbacksPresieveā‚€_1, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_snd_assoc, AlgebraicGeometry.Scheme.Cover.exists_eq, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.trans_app_left, ext_iff, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionMap_comp, AlgebraicGeometry.Scheme.instEtaleF, Hom.wā‚€_assoc, AlgebraicGeometry.Scheme.OpenCover.finiteSubcover_X, AlgebraicGeometry.Scheme.Hom.ι_fromNormalization_assoc, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_map, AlgebraicGeometry.QuasiCompactCover.isCompactOpenCovered_of_isAffineOpen, AlgebraicGeometry.Scheme.coverOfIsIso_f, CategoryTheory.PreOneHypercover.sieve₁'_cylinder, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_snd, AlgebraicGeometry.IsZariskiLocalAtTarget.iff_of_openCover, AlgebraicGeometry.sigmaOpenCover_f, CategoryTheory.sieve₁'_toPreOneHypercover_eq_top, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_map_assoc, CategoryTheory.GrothendieckTopology.OneHypercover.map_amalgamate, AlgebraicGeometry.Scheme.exists_cover_of_mem_grothendieckTopology, AlgebraicGeometry.Scheme.instIsOpenImmersionF, AlgebraicGeometry.Scheme.affineOpenCover_f, CategoryTheory.PreOneHypercover.toPullback_cylinder, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_f, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_snd, sieveā‚€_f, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.preimage_toBase_eq_range_ι, AlgebraicGeometry.Scheme.affineBasisCover_map_range, AlgebraicGeometry.Scheme.Cover.map_prop, AlgebraicGeometry.Scheme.Cover.LocallyDirected.w, AlgebraicGeometry.Scheme.grothendieckTopology_cover, AlgebraicGeometry.Scheme.Cover.Over.isOver_map, AlgebraicGeometry.Scheme.Cover.mkOfCovers_f, AlgebraicGeometry.Scheme.Hom.ι_fromNormalization, AlgebraicGeometry.Scheme.mem_pretopology_iff, AlgebraicGeometry.IsAffineOpen.isCompactOpenCovered, AlgebraicGeometry.Scheme.GlueData.oneHypercover_f, CategoryTheory.PreOneHypercover.cylinder_p₁, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_map, CategoryTheory.PreOneHypercover.cylinder_pā‚‚, TopCat.exists_mem_zeroHypercover_range, CategoryTheory.PreOneHypercover.map_f, AlgebraicGeometry.Scheme.Cover.intersectionOfLocallyDirected_f, AlgebraicGeometry.quasiCompactCover_iff, AlgebraicGeometry.HasRingHomProperty.iff_of_source_openCover, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft_f, AlgebraicGeometry.Scheme.OpenCover.restrict_X, AlgebraicGeometry.Scheme.Cover.mem_pretopology, AlgebraicGeometry.Scheme.openCoverBasicOpenTop_f, toPreOneHypercover_Y, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_fst_assoc, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd, AlgebraicGeometry.Scheme.Cover.functorOfLocallyDirectedHomBase_app, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst, AlgebraicGeometry.Scheme.AffineZariskiSite.PreservesLocalization.colimitDesc_preimage, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_obj, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_X, CategoryTheory.GrothendieckTopology.OneHypercover.multiforkLift_map_assoc, add_f_some, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.relativeGluingData_natTrans_app, shrink_Iā‚€, AlgebraicGeometry.Scheme.pretopology_cover, AlgebraicGeometry.QuasiCompactCover.exists_isAffineOpen_of_isCompact, sum_f, toPreOneHypercover_pā‚‚, AlgebraicGeometry.Scheme.Cover.sigma_f, shrink_f, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft_X, CategoryTheory.PreOneHypercover.cylinderHom_hā‚€, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.isPullback_natTrans_ι_toBase, AlgebraicGeometry.QuasiCompactCover.instPullbackā‚‚Scheme, AlgebraicGeometry.Scheme.Pullback.diagonalCover_map, AlgebraicGeometry.Scheme.Cover.ι_fromGlued, CategoryTheory.PreOneHypercover.cylinder_Y, AlgebraicGeometry.Scheme.Cover.mem_grothendieckTopology
fromShrink šŸ“–CompOp—
instCategory šŸ“–CompOp
33 mathmath: isoMk_hom_hā‚€, inv_hom_hā‚€, inv_hom_hā‚€_comp_f_assoc, inv_hom_sā‚€_apply, CategoryTheory.PreOneHypercover.oneToZero_obj, AlgebraicGeometry.Scheme.Cover.comp_app, instIsIsoHā‚€Hom, CategoryTheory.Precoverage.ZeroHypercover.isoMk_hom, inv_hom_hā‚€_comp_f, inv_inv_hā‚€_comp_f, AlgebraicGeometry.Scheme.Cover.comp_idx_apply, isoMk_hom_sā‚€, AlgebraicGeometry.Scheme.Cover.id_idx_apply, pullbackIso_hom_hā‚€, inv_hom_hā‚€_assoc, pullbackIso_hom_sā‚€, comp_sā‚€, AlgebraicGeometry.Scheme.Cover.id_app, AlgebraicGeometry.Scheme.isClosedUnderIsomorphisms_quasiCompactCover, CategoryTheory.Precoverage.ZeroHypercover.isoMk_inv, hom_inv_hā‚€_assoc, instIsIsoHā‚€Inv, inv_inv_hā‚€_comp_f_assoc, hom_inv_sā‚€_apply, CategoryTheory.PreOneHypercover.oneToZero_map, comp_hā‚€, hom_inv_hā‚€, id_hā‚€, pullbackIso_inv_hā‚€, isoMk_inv_hā‚€, isoMk_inv_sā‚€, id_sā‚€, pullbackIso_inv_sā‚€
instUniqueIā‚€Singleton šŸ“–CompOp—
inter šŸ“–CompOp
12 mathmath: interLift_hā‚€, interLift_sā‚€, CategoryTheory.PreOneHypercover.inter_toPreZeroHypercover, inter_f, interFst_sā‚€, interSnd_hā‚€, inter_X, inter_def, CategoryTheory.Precoverage.ZeroHypercover.inter_toPreZeroHypercover, interFst_hā‚€, inter_Iā‚€, interSnd_sā‚€
interFst šŸ“–CompOp
3 mathmath: interFst_sā‚€, CategoryTheory.PreOneHypercover.interFst_toHom, interFst_hā‚€
interLift šŸ“–CompOp
2 mathmath: interLift_hā‚€, interLift_sā‚€
interSnd šŸ“–CompOp
3 mathmath: CategoryTheory.PreOneHypercover.interSnd_toHom, interSnd_hā‚€, interSnd_sā‚€
isoMk šŸ“–CompOp
4 mathmath: isoMk_hom_hā‚€, isoMk_hom_sā‚€, isoMk_inv_hā‚€, isoMk_inv_sā‚€
map šŸ“–CompOp
5 mathmath: map_Iā‚€, presieveā‚€_map, map_X, map_f, CategoryTheory.Precoverage.ZeroHypercover.map_toPreZeroHypercover
presieveā‚€ šŸ“–CompOp
29 mathmath: CategoryTheory.Precoverage.ZeroHypercover.Small.exists_restrictIndex_mem, CategoryTheory.Presieve.exists_eq_preZeroHypercover, AlgebraicGeometry.Scheme.presieveā‚€_mem_precoverage_iff, CategoryTheory.Precoverage.preZeroHypercoverFamily_property, isSheafFor_iff_of_iso, CategoryTheory.Precoverage.isSheaf_toGrothendieck_iff_of_isStableUnderBaseChange_of_small, presieveā‚€_mem_iff_of_iso, presieveā‚€_map, CategoryTheory.Precoverage.ZeroHypercover.instHasPullbacksPresieveā‚€OfHasPullbacks, CategoryTheory.GrothendieckTopology.OneHypercover.isSheafFor_presieveā‚€, presieveā‚€_restrictIndex_le, shrink_X, AlgebraicGeometry.Scheme.presieveā‚€_mem_qcPrecoverage_iff, CategoryTheory.Presieve.presieveā‚€_preZeroHypercover, presieveā‚€_pullback₁, CategoryTheory.Precoverage.ZeroHypercover.presieveā‚€_mem_of_iso, presieveā‚€_f, CategoryTheory.Precoverage.ZeroHypercover.Small.memā‚€, CategoryTheory.PreZeroHypercoverFamily.mem_precoverage_iff, presieveā‚€_shrink, presieveā‚€_eq_presieveā‚€_iff, presieveā‚€_sum, CategoryTheory.Precoverage.ZeroHypercover.memā‚€, presieveā‚€_singleton, presieveā‚€_mem_precoverage_iff, presieveā‚€_restrictIndex_equiv, presieveā‚€_add, presieveā‚€_reindex, shrink_f
pullbackCoverOfLeft šŸ“–CompOp
4 mathmath: pullbackCoverOfLeft_X, pullbackCoverOfLeft_f, pullbackCoverOfLeft_Iā‚€, CategoryTheory.Precoverage.ZeroHypercover.pullbackCoverOfLeft_toPreZeroHypercover
pullbackCoverOfLeftIsoPullback₁ šŸ“–CompOp—
pullbackCoverOfRight šŸ“–CompOp
4 mathmath: pullbackCoverOfRight_X, CategoryTheory.Precoverage.ZeroHypercover.pullbackCoverOfRight_toPreZeroHypercover, pullbackCoverOfRight_Iā‚€, pullbackCoverOfRight_f
pullbackCoverOfRightIsoPullbackā‚‚ šŸ“–CompOp—
pullbackIso šŸ“–CompOp
4 mathmath: pullbackIso_hom_hā‚€, pullbackIso_hom_sā‚€, pullbackIso_inv_hā‚€, pullbackIso_inv_sā‚€
pullback₁ šŸ“–CompOp
17 mathmath: CategoryTheory.Precoverage.ZeroHypercover.pullback₁_toPreZeroHypercover, pullback₁_X, interLift_hā‚€, inter_f, pullbackIso_hom_hā‚€, AlgebraicGeometry.QuasiCompactCover.instPullback₁Scheme, pullback₁_Iā‚€, CategoryTheory.PreOneHypercover.inter_pā‚‚, pullbackIso_hom_sā‚€, interSnd_hā‚€, inter_X, inter_def, pullbackIso_inv_hā‚€, interFst_hā‚€, CategoryTheory.PreOneHypercover.inter_p₁, pullback₁_f, pullbackIso_inv_sā‚€
pullbackā‚‚ šŸ“–CompOp
10 mathmath: pullbackā‚‚_X, CategoryTheory.Precoverage.ZeroHypercover.pullbackā‚‚_toPreZeroHypercover, pullbackā‚‚_Iā‚€, pullbackā‚‚_f, pullbackIso_hom_hā‚€, pullbackIso_hom_sā‚€, presieveā‚€_pullback₁, pullbackIso_inv_hā‚€, AlgebraicGeometry.QuasiCompactCover.instPullbackā‚‚Scheme, pullbackIso_inv_sā‚€
reindex šŸ“–CompOp
6 mathmath: reindex_Iā‚€, reindex_f, reindex_X, inter_def, CategoryTheory.Precoverage.ZeroHypercover.reindex_toPreZeroHypercover, presieveā‚€_reindex
restrictIndex šŸ“–CompOp
10 mathmath: CategoryTheory.Precoverage.ZeroHypercover.Small.exists_restrictIndex_mem, restrictIndexHom_hā‚€, restrictIndexHom_sā‚€, restrictIndex_X, CategoryTheory.Precoverage.ZeroHypercover.restrictIndexOfSmall_toPreZeroHypercover, presieveā‚€_restrictIndex_le, restrictIndex_f, CategoryTheory.Precoverage.ZeroHypercover.Small.memā‚€, restrictIndex_Iā‚€, presieveā‚€_restrictIndex_equiv
restrictIndexHom šŸ“–CompOp
2 mathmath: restrictIndexHom_hā‚€, restrictIndexHom_sā‚€
shrink šŸ“–CompOp
8 mathmath: AlgebraicGeometry.Scheme.quasiCompactCover_shrink_iff, shrink_X, CategoryTheory.PreZeroHypercoverFamily.iff_shrink, presieveā‚€_shrink, presieveā‚€_eq_presieveā‚€_iff, shrink_Iā‚€, shrink_eq_shrink_of_presieveā‚€_eq_presieveā‚€, shrink_f
sieveā‚€ šŸ“–CompOp
11 mathmath: CategoryTheory.GrothendieckTopology.OneHypercover.memā‚€, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_sieveā‚€, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.exists_oneHypercover, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsGenerating.le, CategoryTheory.GrothendieckTopology.OneHypercover.IsPreservedBy.memā‚€, CategoryTheory.Functor.OneHypercoverDenseData.memā‚€, CategoryTheory.PreOneHypercover.sieveā‚€_cylinder, sieveā‚€_eq_of_iso, sieveā‚€_f, CategoryTheory.PreOneHypercover.sieveā‚€_trivial, Hom.sieveā‚€_le_sieveā‚€
sigmaOfIsColimit šŸ“–CompOp
5 mathmath: sigmaOfIsColimit_X, inj_sigmaOfIsColimit_f_assoc, inj_sigmaOfIsColimit_f, CategoryTheory.PreOneHypercover.sigmaOfIsColimit_toPreZeroHypercover, sigmaOfIsColimit_Iā‚€
singleton šŸ“–CompOp
7 mathmath: singleton_Iā‚€, singleton_X, CategoryTheory.PreOneHypercover.trivial_toPreZeroHypercover, singleton_f, CategoryTheory.Precoverage.ZeroHypercover.singleton_toPreZeroHypercover, AlgebraicGeometry.QuasiCompactCover.singleton, presieveā‚€_singleton
sum šŸ“–CompOp
17 mathmath: sum_f_inr, sum_f_inl, sum_X_inl, sumLift_sā‚€, CategoryTheory.Precoverage.ZeroHypercover.sum_toPreZeroHypercover, sum_X, sumInl_sā‚€, AlgebraicGeometry.QuasiCompactCover.instSumScheme_1, sumInr_hā‚€, presieveā‚€_sum, sumLift_hā‚€, sumInl_hā‚€, sum_Iā‚€, sumInr_sā‚€, sum_f, sum_X_inr, AlgebraicGeometry.QuasiCompactCover.instSumScheme
sumInl šŸ“–CompOp
2 mathmath: sumInl_sā‚€, sumInl_hā‚€
sumInr šŸ“–CompOp
2 mathmath: sumInr_hā‚€, sumInr_sā‚€
sumLift šŸ“–CompOp
2 mathmath: sumLift_sā‚€, sumLift_hā‚€
toShrink šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
add_Iā‚€ šŸ“–mathematical—Iā‚€
add
——
add_X_none šŸ“–mathematical—X
add
Iā‚€
——
add_X_some šŸ“–mathematical—X
add
Iā‚€
——
add_f_nome šŸ“–mathematical—f
add
Iā‚€
——
add_f_some šŸ“–mathematical—f
add
Iā‚€
——
bind_Iā‚€ šŸ“–mathematical—Iā‚€
bind
X
——
bind_X šŸ“–mathematical—X
bind
Iā‚€
——
bind_f šŸ“–mathematical—f
bind
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
Iā‚€
——
comp_hā‚€ šŸ“–mathematical—Hom.hā‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.PreZeroHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
X
Hom.sā‚€
——
comp_sā‚€ šŸ“–mathematical—Hom.sā‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.PreZeroHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
——
ext šŸ“–ā€”Iā‚€
X
f
———
ext_iff šŸ“–mathematical—Iā‚€
X
f
—ext
hom_inv_hā‚€ šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
Hom.sā‚€
CategoryTheory.Iso.hom
CategoryTheory.PreZeroHypercover
instCategory
CategoryTheory.Iso.inv
Hom.hā‚€
CategoryTheory.eqToHom
—Hom.ext'_iff
CategoryTheory.Iso.hom_inv_id
hom_inv_sā‚€_apply
CategoryTheory.eqToHom_naturality
CategoryTheory.Category.comp_id
hom_inv_hā‚€_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
Hom.sā‚€
CategoryTheory.Iso.hom
CategoryTheory.PreZeroHypercover
instCategory
Hom.hā‚€
CategoryTheory.Iso.inv
CategoryTheory.eqToHom
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
hom_inv_hā‚€
hom_inv_sā‚€_apply šŸ“–mathematical—Hom.sā‚€
CategoryTheory.Iso.inv
CategoryTheory.PreZeroHypercover
instCategory
CategoryTheory.Iso.hom
—CategoryTheory.Iso.hom_inv_id
id_hā‚€ šŸ“–mathematical—Hom.hā‚€
CategoryTheory.CategoryStruct.id
CategoryTheory.PreZeroHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
X
——
id_sā‚€ šŸ“–mathematical—Hom.sā‚€
CategoryTheory.CategoryStruct.id
CategoryTheory.PreZeroHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
——
inj_sigmaOfIsColimit_f šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
Iā‚€
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
f
sigmaOfIsColimit
—CategoryTheory.Limits.Cofan.IsColimit.fac
inj_sigmaOfIsColimit_f_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
Iā‚€
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
f
sigmaOfIsColimit
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inj_sigmaOfIsColimit_f
instIsIsoHā‚€Hom šŸ“–mathematical—CategoryTheory.IsIso
X
Hom.sā‚€
CategoryTheory.Iso.hom
CategoryTheory.PreZeroHypercover
instCategory
Hom.hā‚€
—hom_inv_sā‚€_apply
hom_inv_hā‚€_assoc
CategoryTheory.eqToHom_trans
CategoryTheory.eqToHom_refl
CategoryTheory.Category.assoc
CategoryTheory.eqToHom_naturality
inv_hom_hā‚€_assoc
instIsIsoHā‚€Inv šŸ“–mathematical—CategoryTheory.IsIso
X
Hom.sā‚€
CategoryTheory.Iso.inv
CategoryTheory.PreZeroHypercover
instCategory
Hom.hā‚€
—CategoryTheory.IsIso.of_isIso_fac_right
instIsIsoHā‚€Hom
CategoryTheory.instIsIsoEqToHom
inv_hom_hā‚€
interFst_hā‚€ šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
Hom.hā‚€
inter
interFst
CategoryTheory.Limits.pullback.fst
Iā‚€
DFunLike.coe
Equiv
bind
pullback₁
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.sigmaEquivProd
——
interFst_sā‚€ šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
Hom.sā‚€
inter
interFst
Iā‚€
——
interLift_hā‚€ šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
Hom.hā‚€
inter
interLift
CategoryTheory.Limits.pullback.lift
Iā‚€
DFunLike.coe
Equiv
bind
pullback₁
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.sigmaEquivProd
Hom.sā‚€
——
interLift_sā‚€ šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
Hom.sā‚€
inter
interLift
Iā‚€
——
interSnd_hā‚€ šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
Hom.hā‚€
inter
interSnd
CategoryTheory.Limits.pullback.snd
Iā‚€
DFunLike.coe
Equiv
bind
pullback₁
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.sigmaEquivProd
——
interSnd_sā‚€ šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
Hom.sā‚€
inter
interSnd
Iā‚€
——
inter_Iā‚€ šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
Iā‚€
inter
——
inter_X šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
inter
CategoryTheory.Limits.pullback
Iā‚€
pullback₁
——
inter_def šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
inter
reindex
bind
pullback₁
Iā‚€
Equiv.symm
Equiv.sigmaEquivProd
——
inter_f šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
inter
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
Iā‚€
pullback₁
CategoryTheory.Limits.pullback.fst
——
inv_hom_hā‚€ šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
Hom.sā‚€
CategoryTheory.Iso.inv
CategoryTheory.PreZeroHypercover
instCategory
CategoryTheory.Iso.hom
Hom.hā‚€
CategoryTheory.eqToHom
—Hom.ext'_iff
CategoryTheory.Iso.inv_hom_id
inv_hom_sā‚€_apply
CategoryTheory.eqToHom_naturality
CategoryTheory.Category.comp_id
inv_hom_hā‚€_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
Hom.sā‚€
CategoryTheory.Iso.inv
CategoryTheory.PreZeroHypercover
instCategory
Hom.hā‚€
CategoryTheory.Iso.hom
CategoryTheory.eqToHom
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inv_hom_hā‚€
inv_hom_hā‚€_comp_f šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
Hom.sā‚€
CategoryTheory.Iso.hom
CategoryTheory.PreZeroHypercover
instCategory
CategoryTheory.inv
Hom.hā‚€
instIsIsoHā‚€Hom
f
—instIsIsoHā‚€Hom
Hom.wā‚€
inv_hom_hā‚€_comp_f_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
Hom.sā‚€
CategoryTheory.Iso.hom
CategoryTheory.PreZeroHypercover
instCategory
CategoryTheory.inv
Hom.hā‚€
instIsIsoHā‚€Hom
f
—instIsIsoHā‚€Hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inv_hom_hā‚€_comp_f
inv_hom_sā‚€_apply šŸ“–mathematical—Hom.sā‚€
CategoryTheory.Iso.hom
CategoryTheory.PreZeroHypercover
instCategory
CategoryTheory.Iso.inv
—CategoryTheory.Iso.inv_hom_id
inv_inv_hā‚€_comp_f šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
Hom.sā‚€
CategoryTheory.Iso.inv
CategoryTheory.PreZeroHypercover
instCategory
CategoryTheory.inv
Hom.hā‚€
instIsIsoHā‚€Inv
f
—instIsIsoHā‚€Inv
Hom.wā‚€
inv_inv_hā‚€_comp_f_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
Hom.sā‚€
CategoryTheory.Iso.inv
CategoryTheory.PreZeroHypercover
instCategory
CategoryTheory.inv
Hom.hā‚€
instIsIsoHā‚€Inv
f
—instIsIsoHā‚€Inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inv_inv_hā‚€_comp_f
isoMk_hom_hā‚€ šŸ“–mathematical—Hom.hā‚€
CategoryTheory.Iso.hom
CategoryTheory.PreZeroHypercover
instCategory
isoMk
X
DFunLike.coe
Equiv
Iā‚€
EquivLike.toFunLike
Equiv.instEquivLike
——
isoMk_hom_sā‚€ šŸ“–mathematical—Hom.sā‚€
CategoryTheory.Iso.hom
CategoryTheory.PreZeroHypercover
instCategory
isoMk
DFunLike.coe
Equiv
Iā‚€
EquivLike.toFunLike
Equiv.instEquivLike
——
isoMk_inv_hā‚€ šŸ“–mathematical—Hom.hā‚€
CategoryTheory.Iso.inv
CategoryTheory.PreZeroHypercover
instCategory
isoMk
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
DFunLike.coe
Equiv
Iā‚€
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.eqToHom
——
isoMk_inv_sā‚€ šŸ“–mathematical—Hom.sā‚€
CategoryTheory.Iso.inv
CategoryTheory.PreZeroHypercover
instCategory
isoMk
DFunLike.coe
Equiv
Iā‚€
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
——
map_Iā‚€ šŸ“–mathematical—Iā‚€
CategoryTheory.Functor.obj
map
——
map_X šŸ“–mathematical—X
CategoryTheory.Functor.obj
map
——
map_f šŸ“–mathematical—f
CategoryTheory.Functor.obj
map
CategoryTheory.Functor.map
X
——
presieveā‚€_add šŸ“–mathematical—presieveā‚€
add
CategoryTheory.Presieve
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticePresieve
CategoryTheory.Presieve.singleton
—presieveā‚€_reindex
presieveā‚€_sum
presieveā‚€_singleton
presieveā‚€_eq_presieveā‚€_iff šŸ“–mathematical—presieveā‚€
shrink
—shrink_eq_shrink_of_presieveā‚€_eq_presieveā‚€
presieveā‚€_shrink
presieveā‚€_f šŸ“–mathematical—presieveā‚€
X
f
——
presieveā‚€_map šŸ“–mathematical—presieveā‚€
CategoryTheory.Functor.obj
map
CategoryTheory.Presieve.map
—CategoryTheory.Presieve.map_ofArrows
presieveā‚€_mem_iff_of_iso šŸ“–mathematical—CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
presieveā‚€
—presieveā‚€_mem_of_iso
presieveā‚€_mem_of_iso šŸ“–ā€”CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
presieveā‚€
——CategoryTheory.Precoverage.RespectsIso.of_forall_exists_iso
instIsIsoHā‚€Hom
inv_hom_hā‚€_comp_f
instIsIsoHā‚€Inv
inv_inv_hā‚€_comp_f
presieveā‚€_pullback₁ šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
presieveā‚€
pullbackā‚‚
CategoryTheory.Presieve.pullbackArrows
CategoryTheory.Presieve.instHasPullbacksOfArrowsOfHasPullback
Iā‚€
—le_antisymm
CategoryTheory.Presieve.instHasPullbacksOfArrowsOfHasPullback
CategoryTheory.Presieve.hasPullback
presieveā‚€_reindex šŸ“–mathematical—presieveā‚€
reindex
—presieveā‚€_restrictIndex_equiv
presieveā‚€_restrictIndex_equiv šŸ“–mathematical—presieveā‚€
restrictIndex
DFunLike.coe
Equiv
Iā‚€
EquivLike.toFunLike
Equiv.instEquivLike
—le_antisymm
Equiv.surjective
presieveā‚€_restrictIndex_le šŸ“–mathematical—CategoryTheory.Presieve
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticePresieve
presieveā‚€
restrictIndex
—CategoryTheory.Presieve.ofArrows_le_iff
presieveā‚€_shrink šŸ“–mathematical—presieveā‚€
shrink
—CategoryTheory.Presieve.presieveā‚€_preZeroHypercover
presieveā‚€_singleton šŸ“–mathematical—presieveā‚€
singleton
CategoryTheory.Presieve.singleton
—CategoryTheory.Presieve.ofArrows_pUnit
presieveā‚€_sum šŸ“–mathematical—presieveā‚€
sum
CategoryTheory.Presieve
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticePresieve
—presieveā‚€.eq_1
le_antisymm
pullbackCoverOfLeft_Iā‚€ šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
f
Iā‚€
CategoryTheory.Limits.pullback
pullbackCoverOfLeft
——
pullbackCoverOfLeft_X šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
f
CategoryTheory.Limits.pullback
pullbackCoverOfLeft
——
pullbackCoverOfLeft_f šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
f
CategoryTheory.Limits.pullback
pullbackCoverOfLeft
CategoryTheory.Limits.pullback.map
CategoryTheory.CategoryStruct.id
——
pullbackCoverOfRight_Iā‚€ šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
f
Iā‚€
CategoryTheory.Limits.pullback
pullbackCoverOfRight
——
pullbackCoverOfRight_X šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
f
CategoryTheory.Limits.pullback
pullbackCoverOfRight
——
pullbackCoverOfRight_f šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
f
CategoryTheory.Limits.pullback
pullbackCoverOfRight
CategoryTheory.Limits.pullback.map
CategoryTheory.CategoryStruct.id
——
pullbackIso_hom_hā‚€ šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
Hom.hā‚€
pullback₁
pullbackā‚‚
CategoryTheory.Iso.hom
CategoryTheory.PreZeroHypercover
instCategory
pullbackIso
CategoryTheory.Limits.pullback
CategoryTheory.Limits.pullbackSymmetry
——
pullbackIso_hom_sā‚€ šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
Hom.sā‚€
pullback₁
pullbackā‚‚
CategoryTheory.Iso.hom
CategoryTheory.PreZeroHypercover
instCategory
pullbackIso
Iā‚€
——
pullbackIso_inv_hā‚€ šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
Hom.hā‚€
pullbackā‚‚
pullback₁
CategoryTheory.Iso.inv
CategoryTheory.PreZeroHypercover
instCategory
pullbackIso
CategoryTheory.Limits.pullback
CategoryTheory.Limits.pullbackSymmetry
——
pullbackIso_inv_sā‚€ šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
Hom.sā‚€
pullbackā‚‚
pullback₁
CategoryTheory.Iso.inv
CategoryTheory.PreZeroHypercover
instCategory
pullbackIso
Iā‚€
——
pullback₁_Iā‚€ šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
Iā‚€
pullback₁
——
pullback₁_X šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
pullback₁
CategoryTheory.Limits.pullback
——
pullback₁_f šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
pullback₁
CategoryTheory.Limits.pullback.fst
——
pullbackā‚‚_Iā‚€ šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
Iā‚€
pullbackā‚‚
——
pullbackā‚‚_X šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
pullbackā‚‚
CategoryTheory.Limits.pullback
——
pullbackā‚‚_f šŸ“–mathematicalCategoryTheory.Limits.HasPullback
X
f
pullbackā‚‚
CategoryTheory.Limits.pullback.snd
——
reindex_Iā‚€ šŸ“–mathematical—Iā‚€
reindex
——
reindex_X šŸ“–mathematical—X
reindex
DFunLike.coe
Equiv
Iā‚€
EquivLike.toFunLike
Equiv.instEquivLike
——
reindex_f šŸ“–mathematical—f
reindex
DFunLike.coe
Equiv
Iā‚€
EquivLike.toFunLike
Equiv.instEquivLike
——
restrictIndexHom_hā‚€ šŸ“–mathematical—Hom.hā‚€
restrictIndex
restrictIndexHom
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
X
——
restrictIndexHom_sā‚€ šŸ“–mathematical—Hom.sā‚€
restrictIndex
restrictIndexHom
——
restrictIndex_Iā‚€ šŸ“–mathematical—Iā‚€
restrictIndex
——
restrictIndex_X šŸ“–mathematical—X
restrictIndex
Iā‚€
——
restrictIndex_f šŸ“–mathematical—f
restrictIndex
——
shrink_Iā‚€ šŸ“–mathematical—Iā‚€
shrink
Set.Elem
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Set.range
X
f
—CategoryTheory.Presieve.uncurry_ofArrows
shrink_X šŸ“–mathematical—X
shrink
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Set
Set.instMembership
CategoryTheory.Presieve.uncurry
presieveā‚€
——
shrink_eq_shrink_of_presieveā‚€_eq_presieveā‚€ šŸ“–mathematicalpresieveā‚€shrink—shrink.eq_1
shrink_f šŸ“–mathematical—f
shrink
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Set
Set.instMembership
CategoryTheory.Presieve.uncurry
presieveā‚€
——
sieveā‚€_eq_of_iso šŸ“–mathematical—sieve₀—le_antisymm
Hom.sieveā‚€_le_sieveā‚€
sieveā‚€_f šŸ“–mathematical—CategoryTheory.Sieve.arrows
sieveā‚€
X
f
—CategoryTheory.Category.id_comp
sigmaOfIsColimit_Iā‚€ šŸ“–mathematical—Iā‚€
sigmaOfIsColimit
——
sigmaOfIsColimit_X šŸ“–mathematical—X
sigmaOfIsColimit
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
Iā‚€
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
——
singleton_Iā‚€ šŸ“–mathematical—Iā‚€
singleton
——
singleton_X šŸ“–mathematical—X
singleton
——
singleton_f šŸ“–mathematical—f
singleton
——
sumInl_hā‚€ šŸ“–mathematical—Hom.hā‚€
sum
sumInl
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
X
——
sumInl_sā‚€ šŸ“–mathematical—Hom.sā‚€
sum
sumInl
Iā‚€
——
sumInr_hā‚€ šŸ“–mathematical—Hom.hā‚€
sum
sumInr
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
X
——
sumInr_sā‚€ šŸ“–mathematical—Hom.sā‚€
sum
sumInr
Iā‚€
——
sumLift_hā‚€ šŸ“–mathematical—Hom.hā‚€
sum
sumLift
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
Iā‚€
Hom.sā‚€
——
sumLift_sā‚€ šŸ“–mathematical—Hom.sā‚€
sum
sumLift
Iā‚€
——
sum_Iā‚€ šŸ“–mathematical—Iā‚€
sum
——
sum_X šŸ“–mathematical—X
sum
Iā‚€
——
sum_X_inl šŸ“–mathematical—X
sum
Iā‚€
——
sum_X_inr šŸ“–mathematical—X
sum
Iā‚€
——
sum_f šŸ“–mathematical—f
sum
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Iā‚€
X
——
sum_f_inl šŸ“–mathematical—f
sum
Iā‚€
——
sum_f_inr šŸ“–mathematical—f
sum
Iā‚€
——

CategoryTheory.PreZeroHypercover.Hom

Definitions

NameCategoryTheorems
comp šŸ“–CompOp
2 mathmath: comp_hā‚€, comp_sā‚€
hā‚€ šŸ“–CompOp
62 mathmath: CategoryTheory.PreZeroHypercover.isoMk_hom_hā‚€, CategoryTheory.PreZeroHypercover.inv_hom_hā‚€, CategoryTheory.PreOneHypercover.Hom.ext_iff, CategoryTheory.PreOneHypercover.Homotopy.wl, CategoryTheory.PreZeroHypercover.inv_hom_hā‚€_comp_f_assoc, CategoryTheory.PreOneHypercover.Hom.w₁₁, CategoryTheory.PreOneHypercover.cylinderHom_h₁, CategoryTheory.PreOneHypercover.Hom.comp_hā‚€, AlgebraicGeometry.Scheme.Cover.comp_app, CategoryTheory.PreZeroHypercover.instIsIsoHā‚€Hom, CategoryTheory.PreZeroHypercover.inv_hom_hā‚€_comp_f, CategoryTheory.PreZeroHypercover.interLift_hā‚€, CategoryTheory.PreZeroHypercover.inv_inv_hā‚€_comp_f, CategoryTheory.PreZeroHypercover.restrictIndexHom_hā‚€, id_hā‚€, CategoryTheory.PreOneHypercover.Homotopy.wl_assoc, CategoryTheory.Precoverage.ZeroHypercover.id_hā‚€, CategoryTheory.PreOneHypercover.id_hā‚€, wā‚€, AlgebraicGeometry.QuasiCompactCover.exists_hom, AlgebraicGeometry.Scheme.Cover.Hom.w, ext'_iff, ext_iff, CategoryTheory.PreZeroHypercover.pullbackIso_hom_hā‚€, CategoryTheory.PreZeroHypercover.inv_hom_hā‚€_assoc, CategoryTheory.PreZeroHypercover.interSnd_hā‚€, AlgebraicGeometry.Scheme.Cover.id_app, CategoryTheory.PreZeroHypercover.hom_inv_hā‚€_assoc, CategoryTheory.PreZeroHypercover.instIsIsoHā‚€Inv, CategoryTheory.PreOneHypercover.Hom.id_hā‚€, CategoryTheory.PreZeroHypercover.inv_inv_hā‚€_comp_f_assoc, AlgebraicGeometry.Scheme.Cover.Hom.sigma_hā‚€, CategoryTheory.PreOneHypercover.sieveā‚€_cylinder, CategoryTheory.PreZeroHypercover.comp_hā‚€, AlgebraicGeometry.Scheme.Cover.toSigma_hā‚€, CategoryTheory.GrothendieckTopology.OneHypercover.id_hā‚€, CategoryTheory.PreZeroHypercover.sumInr_hā‚€, CategoryTheory.PreZeroHypercover.hom_inv_hā‚€, CategoryTheory.PreZeroHypercover.id_hā‚€, CategoryTheory.PreOneHypercover.Hom.w₁₂_assoc, wā‚€_assoc, CategoryTheory.PreZeroHypercover.pullbackIso_inv_hā‚€, CategoryTheory.PreZeroHypercover.sumLift_hā‚€, CategoryTheory.PreOneHypercover.sieve₁'_cylinder, CategoryTheory.PreZeroHypercover.sumInl_hā‚€, CategoryTheory.PreOneHypercover.toPullback_cylinder, CategoryTheory.GrothendieckTopology.OneHypercover.comp_hā‚€, comp_hā‚€, CategoryTheory.PreOneHypercover.Hom.w₁₂, CategoryTheory.PreZeroHypercover.interFst_hā‚€, CategoryTheory.PreOneHypercover.comp_hā‚€, CategoryTheory.PreOneHypercover.Homotopy.wr, CategoryTheory.PreOneHypercover.cylinder_p₁, CategoryTheory.PreOneHypercover.Hom.mapMultiforkOfIsLimit_ι_assoc, CategoryTheory.PreOneHypercover.cylinder_pā‚‚, CategoryTheory.PreZeroHypercover.isoMk_inv_hā‚€, CategoryTheory.PreOneHypercover.Hom.mapMultiforkOfIsLimit_ι, CategoryTheory.PreOneHypercover.Hom.w₁₁_assoc, CategoryTheory.PreOneHypercover.Homotopy.wr_assoc, CategoryTheory.Precoverage.ZeroHypercover.comp_hā‚€, CategoryTheory.PreOneHypercover.cylinderHom_hā‚€, CategoryTheory.PreOneHypercover.cylinder_Y
id šŸ“–CompOp
2 mathmath: id_hā‚€, id_sā‚€
sā‚€ šŸ“–CompOp
86 mathmath: CategoryTheory.PreOneHypercover.Hom.comp_s₁, CategoryTheory.PreZeroHypercover.inv_hom_hā‚€, CategoryTheory.PreOneHypercover.Hom.ext_iff, CategoryTheory.GrothendieckTopology.OneHypercover.comp_h₁, CategoryTheory.PreOneHypercover.comp_sā‚€, CategoryTheory.PreOneHypercover.Homotopy.wl, CategoryTheory.PreZeroHypercover.inv_hom_hā‚€_comp_f_assoc, CategoryTheory.PreZeroHypercover.inv_hom_sā‚€_apply, CategoryTheory.PreOneHypercover.Hom.w₁₁, CategoryTheory.PreOneHypercover.cylinder_X, CategoryTheory.PreOneHypercover.cylinderHom_h₁, CategoryTheory.PreOneHypercover.Hom.comp_hā‚€, AlgebraicGeometry.Scheme.Cover.comp_app, CategoryTheory.PreZeroHypercover.instIsIsoHā‚€Hom, CategoryTheory.PreZeroHypercover.inv_hom_hā‚€_comp_f, CategoryTheory.PreZeroHypercover.interLift_hā‚€, CategoryTheory.PreZeroHypercover.inv_inv_hā‚€_comp_f, AlgebraicGeometry.Scheme.Cover.comp_idx_apply, CategoryTheory.PreOneHypercover.Homotopy.wl_assoc, CategoryTheory.PreZeroHypercover.restrictIndexHom_sā‚€, CategoryTheory.PreZeroHypercover.interLift_sā‚€, wā‚€, AlgebraicGeometry.QuasiCompactCover.exists_hom, CategoryTheory.PreZeroHypercover.isoMk_hom_sā‚€, CategoryTheory.PreOneHypercover.Hom.comp_sā‚€, AlgebraicGeometry.Scheme.Cover.Hom.w, ext'_iff, ext_iff, AlgebraicGeometry.Scheme.Cover.id_idx_apply, CategoryTheory.PreZeroHypercover.sumLift_sā‚€, AlgebraicGeometry.Scheme.Cover.toSigma_sā‚€, CategoryTheory.PreZeroHypercover.inv_hom_hā‚€_assoc, CategoryTheory.PreZeroHypercover.interFst_sā‚€, CategoryTheory.PreOneHypercover.cylinder_Iā‚€, CategoryTheory.Precoverage.ZeroHypercover.id_sā‚€, CategoryTheory.PreZeroHypercover.pullbackIso_hom_sā‚€, CategoryTheory.PreZeroHypercover.comp_sā‚€, CategoryTheory.PreOneHypercover.cylinder_f, CategoryTheory.Precoverage.ZeroHypercover.comp_sā‚€, CategoryTheory.PreOneHypercover.comp_s₁, CategoryTheory.PreOneHypercover.cylinder_I₁, CategoryTheory.PreZeroHypercover.hom_inv_hā‚€_assoc, CategoryTheory.PreOneHypercover.id_sā‚€, CategoryTheory.PreZeroHypercover.instIsIsoHā‚€Inv, CategoryTheory.PreZeroHypercover.inv_inv_hā‚€_comp_f_assoc, CategoryTheory.PreZeroHypercover.hom_inv_sā‚€_apply, AlgebraicGeometry.Scheme.Cover.Hom.sigma_hā‚€, CategoryTheory.PreOneHypercover.sieveā‚€_cylinder, CategoryTheory.PreZeroHypercover.comp_hā‚€, CategoryTheory.PreZeroHypercover.sumInl_sā‚€, CategoryTheory.GrothendieckTopology.OneHypercover.id_sā‚€, CategoryTheory.GrothendieckTopology.OneHypercover.comp_s₁, CategoryTheory.PreZeroHypercover.hom_inv_hā‚€, AlgebraicGeometry.Scheme.Cover.Hom.sigma_sā‚€, CategoryTheory.PreOneHypercover.Hom.w₁₂_assoc, wā‚€_assoc, id_sā‚€, CategoryTheory.PreZeroHypercover.sumLift_hā‚€, CategoryTheory.PreOneHypercover.sieve₁'_cylinder, CategoryTheory.PreOneHypercover.toPullback_cylinder, CategoryTheory.GrothendieckTopology.OneHypercover.comp_hā‚€, comp_hā‚€, CategoryTheory.PreOneHypercover.Hom.w₁₂, CategoryTheory.PreOneHypercover.comp_hā‚€, CategoryTheory.PreOneHypercover.Homotopy.wr, CategoryTheory.PreZeroHypercover.sumInr_sā‚€, CategoryTheory.GrothendieckTopology.OneHypercover.comp_sā‚€, CategoryTheory.PreOneHypercover.cylinder_p₁, CategoryTheory.PreOneHypercover.Hom.mapMultiforkOfIsLimit_ι_assoc, CategoryTheory.PreOneHypercover.cylinder_pā‚‚, CategoryTheory.PreOneHypercover.cylinderHom_s₁, CategoryTheory.PreOneHypercover.Hom.comp_h₁, CategoryTheory.PreZeroHypercover.isoMk_inv_sā‚€, comp_sā‚€, CategoryTheory.PreOneHypercover.cylinderHom_sā‚€, CategoryTheory.PreOneHypercover.Hom.mapMultiforkOfIsLimit_ι, CategoryTheory.PreZeroHypercover.id_sā‚€, CategoryTheory.PreOneHypercover.Hom.w₁₁_assoc, CategoryTheory.PreOneHypercover.Homotopy.wr_assoc, CategoryTheory.Precoverage.ZeroHypercover.comp_hā‚€, CategoryTheory.PreOneHypercover.comp_h₁, CategoryTheory.PreOneHypercover.Hom.id_sā‚€, CategoryTheory.PreOneHypercover.cylinderHom_hā‚€, CategoryTheory.PreOneHypercover.cylinder_Y, CategoryTheory.PreZeroHypercover.pullbackIso_inv_sā‚€, CategoryTheory.PreZeroHypercover.interSnd_sā‚€

Theorems

NameKindAssumesProvesValidatesDepends On
comp_hā‚€ šŸ“–mathematical—hā‚€
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
sā‚€
CategoryTheory.PreZeroHypercover.Iā‚€
——
comp_sā‚€ šŸ“–mathematical—sā‚€
comp
CategoryTheory.PreZeroHypercover.Iā‚€
——
ext šŸ“–ā€”sā‚€
hā‚€
———
ext' šŸ“–ā€”sā‚€
hā‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
CategoryTheory.eqToHom
——CategoryTheory.Category.comp_id
ext'_iff šŸ“–mathematical—hā‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
sā‚€
CategoryTheory.eqToHom
—CategoryTheory.Category.comp_id
ext'
ext_iff šŸ“–mathematical—sā‚€
hā‚€
—ext
id_hā‚€ šŸ“–mathematical—hā‚€
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
——
id_sā‚€ šŸ“–mathematical—sā‚€
id
CategoryTheory.PreZeroHypercover.Iā‚€
——
sieveā‚€_le_sieveā‚€ šŸ“–mathematical—CategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Sieve.instCompleteLattice
CategoryTheory.PreZeroHypercover.sieveā‚€
—CategoryTheory.Sieve.generate_le_iff
CategoryTheory.Presieve.ofArrows_le_iff
wā‚€
CategoryTheory.Sieve.downward_closed
CategoryTheory.Sieve.le_generate
wā‚€ šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
sā‚€
hā‚€
CategoryTheory.PreZeroHypercover.f
——
wā‚€_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
sā‚€
hā‚€
CategoryTheory.PreZeroHypercover.f
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
wā‚€

CategoryTheory.Precoverage

Definitions

NameCategoryTheorems
RespectsIso šŸ“–CompData
1 mathmath: instRespectsIsoOfIsStableUnderBaseChange
ZeroHypercover šŸ“–CompData
6 mathmath: ZeroHypercover.isoMk_hom, ZeroHypercover.id_hā‚€, ZeroHypercover.id_sā‚€, ZeroHypercover.isoMk_inv, ZeroHypercover.comp_sā‚€, ZeroHypercover.comp_hā‚€

Theorems

NameKindAssumesProvesValidatesDepends On
instRespectsIsoOfIsStableUnderBaseChange šŸ“–mathematical—RespectsIso—mem_coverings_of_isPullback
CategoryTheory.Presieve.ofArrows_comp_eq_of_surjective
CategoryTheory.PreZeroHypercover.hom_inv_sā‚€_apply
CategoryTheory.IsPullback.of_vert_isIso
CategoryTheory.PreZeroHypercover.instIsIsoHā‚€Inv
CategoryTheory.IsIso.id
CategoryTheory.Category.comp_id
CategoryTheory.PreZeroHypercover.Hom.wā‚€
instSmallComap šŸ“–mathematical—Small
comap
—le_rfl
instSmallOfSmall
CategoryTheory.Presieve.map_ofArrows
ZeroHypercover.memā‚€
instSmallOfSmall šŸ“–mathematical—ZeroHypercover.Small—ZeroHypercover.instSmall
Small.zeroHypercoverSmall
ZeroHypercover.memā‚€
le_of_zeroHypercover šŸ“–mathematicalCategoryTheory.Presieve
Set
Set.instMembership
coverings
CategoryTheory.PreZeroHypercover.presieveā‚€
ZeroHypercover.toPreZeroHypercover
CategoryTheory.Precoverage
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
—CategoryTheory.Presieve.exists_eq_preZeroHypercover
mem_iff_exists_zeroHypercover šŸ“–mathematical—CategoryTheory.Presieve
Set
Set.instMembership
coverings
CategoryTheory.Presieve.ofArrows
CategoryTheory.PreZeroHypercover.Iā‚€
ZeroHypercover.toPreZeroHypercover
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
—CategoryTheory.Presieve.exists_eq_ofArrows
ZeroHypercover.memā‚€

CategoryTheory.Precoverage.RespectsIso

Theorems

NameKindAssumesProvesValidatesDepends On
of_forall_exists_iso šŸ“–ā€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
——CategoryTheory.Iso.inv_hom_id_assoc
le_antisymm
of_iso
of_iso šŸ“–ā€”CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.PreZeroHypercover.presieveā‚€
———

CategoryTheory.Precoverage.Small

Theorems

NameKindAssumesProvesValidatesDepends On
inf šŸ“–mathematicalCategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.Precoverage.Small
CategoryTheory.Precoverage
CategoryTheory.Precoverage.instMin
—inf_le_left
CategoryTheory.Precoverage.instSmallOfSmall
CategoryTheory.Precoverage.ZeroHypercover.memā‚€
zeroHypercoverSmall šŸ“–mathematical—CategoryTheory.Precoverage.ZeroHypercover.Small——

CategoryTheory.Precoverage.ZeroHypercover

Definitions

NameCategoryTheorems
add šŸ“–CompOp
1 mathmath: add_toPreZeroHypercover
bind šŸ“–CompOp
1 mathmath: bind_toPreZeroHypercover
instCategory šŸ“–CompOp
8 mathmath: isoMk_hom, id_hā‚€, AlgebraicGeometry.Scheme.Cover.sigmaFunctor_obj, id_sā‚€, isoMk_inv, comp_sā‚€, AlgebraicGeometry.Scheme.Cover.sigmaFunctor_map, comp_hā‚€
inter šŸ“–CompOp
1 mathmath: inter_toPreZeroHypercover
isoMk šŸ“–CompOp
2 mathmath: isoMk_hom, isoMk_inv
map šŸ“–CompOp
1 mathmath: map_toPreZeroHypercover
pullbackCoverOfLeft šŸ“–CompOp
1 mathmath: pullbackCoverOfLeft_toPreZeroHypercover
pullbackCoverOfRight šŸ“–CompOp
1 mathmath: pullbackCoverOfRight_toPreZeroHypercover
pullback₁ šŸ“–CompOp
20 mathmath: AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd, pullback₁_toPreZeroHypercover, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd_assoc, AlgebraicGeometry.ExistsHomHomCompEqCompAux.exists_eq, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_pullbackHom, AlgebraicGeometry.Scheme.Pullback.left_affine_comp_pullback_hasPullback, AlgebraicGeometry.HasAffineProperty.iff_of_openCover, AlgebraicGeometry.ExistsHomHomCompEqCompAux.hš’°X, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_pullbackHom_assoc, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_f, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst_assoc, AlgebraicGeometry.IsLocalAtTarget.iff_of_openCover, instSmallPullback₁, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_map, AlgebraicGeometry.IsZariskiLocalAtTarget.iff_of_openCover, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_map_assoc, AlgebraicGeometry.Scheme.Cover.pullbackHom_map_assoc, AlgebraicGeometry.Scheme.Cover.pullbackHom_map, AlgebraicGeometry.Scheme.Pullback.diagonalCover_map, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst
pullbackā‚‚ šŸ“–CompOp
1 mathmath: pullbackā‚‚_toPreZeroHypercover
reindex šŸ“–CompOp
1 mathmath: reindex_toPreZeroHypercover
restrictIndexOfSmall šŸ“–CompOp
1 mathmath: restrictIndexOfSmall_toPreZeroHypercover
singleton šŸ“–CompOp
1 mathmath: singleton_toPreZeroHypercover
sum šŸ“–CompOp
1 mathmath: sum_toPreZeroHypercover
toPreZeroHypercover šŸ“–CompOp
218 mathmath: AlgebraicGeometry.Scheme.coverOfIsIso_Iā‚€, AlgebraicGeometry.Scheme.AffineOpenCover.openCover_f, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_X, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_snd_assoc, AlgebraicGeometry.Scheme.Cover.LocallyDirected.directed, AlgebraicGeometry.instIsLocallyArtinianXScheme, Small.exists_restrictIndex_mem, AlgebraicGeometry.Scheme.AffineCover.cover_Iā‚€, AlgebraicGeometry.Scheme.affineBasisCover_is_basis, CategoryTheory.MorphismProperty.IsLocalAtTarget.iff_of_zeroHypercover, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_f, AlgebraicGeometry.Scheme.mem_grothendieckTopology_iff, AlgebraicGeometry.Scheme.Cover.iUnion_range, AlgebraicGeometry.QuasiCompactCover.instCoverOfIsIso, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle_fst, AlgebraicGeometry.sigmaOpenCover_X, AlgebraicGeometry.Scheme.Hom.iUnion_support_ker_openCover_map_comp, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_Iā‚€, AlgebraicGeometry.Scheme.OpenCover.finiteSubcover_f, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_f, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_X, AlgebraicGeometry.Scheme.Pullback.openCoverOfRight_Iā‚€, AlgebraicGeometry.ExistsHomHomCompEqCompAux.exists_eq, AlgebraicGeometry.Scheme.Cover.functorOfLocallyDirected_obj, CategoryTheory.MorphismProperty.iff_of_zeroHypercover_target, AlgebraicGeometry.Scheme.openCoverOfIsOpenCover_Iā‚€, AlgebraicGeometry.ExistsHomHomCompEqCompAux.hš’°S, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle, AlgebraicGeometry.Scheme.affineOpenCover_Iā‚€, AlgebraicGeometry.Scheme.Cover.gluedCover_t, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_Iā‚€, AlgebraicGeometry.Scheme.Cover.gluedCover_U, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_pullbackHom, CategoryTheory.MorphismProperty.IsLocalAtTarget.pullbackSnd, isoMk_hom, AlgebraicGeometry.Scheme.affineOpenCover_idx, AlgebraicGeometry.Scheme.Hom.fromNormalization_preimage, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.cocone_ι_transitionMap, AlgebraicGeometry.Scheme.Cover.mkOfCovers_Iā‚€, AlgebraicGeometry.Scheme.Pullback.left_affine_comp_pullback_hasPullback, AlgebraicGeometry.IsLocalAtSource.iff_of_openCover, AlgebraicGeometry.Scheme.Hom.ι_toNormalization, CategoryTheory.Precoverage.isSheaf_toGrothendieck_iff_of_isStableUnderBaseChange_of_small, id_hā‚€, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionCocone_pt, AlgebraicGeometry.Scheme.GlueData.openCover_f, AlgebraicGeometry.instIsAffineXSchemeAffineCover, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionMap_id, AlgebraicGeometry.Scheme.Hom.cover_X, AlgebraicGeometry.Scheme.directedAffineCover_f, AlgebraicGeometry.Scheme.Cover.gluedCover_V, restrictIndexOfSmall_toPreZeroHypercover, AlgebraicGeometry.Scheme.Cover.coconeOfLocallyDirected_ι, AlgebraicGeometry.Scheme.Cover.ι_fromGlued_assoc, AlgebraicGeometry.Scheme.OpenCover.isOpenCover_opensRange, AlgebraicGeometry.Scheme.Cover.ulift_X, AlgebraicGeometry.Scheme.openCoverOfIsOpenCover_f, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_fst, AlgebraicGeometry.Scheme.Cover.covers, AlgebraicGeometry.Scheme.IsLocallyDirected.openCover_f, AlgebraicGeometry.QuasiCompactCover.exists_hom, instHasPullbacksPresieveā‚€OfHasPullbacks, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_fst, AlgebraicGeometry.Scheme.isAffine_affineBasisCover, AlgebraicGeometry.Scheme.Cover.trans_id, AlgebraicGeometry.sourceLocalClosure.property_coverMap_comp, AlgebraicGeometry.Scheme.Cover.exists_lift_trans_eq, CategoryTheory.MorphismProperty.iff_of_zeroHypercover_source, CategoryTheory.MorphismProperty.IsLocalAtSource.comp, AlgebraicGeometry.Scheme.directedAffineCover_Iā‚€, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.equifibered, AlgebraicGeometry.Scheme.Cover.instIsLocallyDirectedIā‚€CompFunctorOfLocallyDirectedForget, AlgebraicGeometry.ExistsHomHomCompEqCompAux.hš’°X, AlgebraicGeometry.Scheme.OpenCover.restrict_f, AlgebraicGeometry.Scheme.OpenCover.iSup_opensRange, AlgebraicGeometry.Scheme.Cover.mkOfCovers_X, AlgebraicGeometry.Scheme.exists_cover_of_mem_pretopology, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_openCover_map, AlgebraicGeometry.Scheme.Pullback.openCoverOfRight_f, AlgebraicGeometry.Scheme.Hom.iInf_ker_openCover_map_comp, AlgebraicGeometry.Scheme.AffineCover.cover_f, AlgebraicGeometry.Scheme.Cover.gluedCover_J, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionCocone_ι_app, sum_toPreZeroHypercover, TopCat.isOpenEmbedding_f_zeroHypercover, AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle_snd, AlgebraicGeometry.Scheme.Cover.trans_map, AlgebraicGeometry.Scheme.openCoverOfIsOpenCover_X, AlgebraicGeometry.Scheme.Cover.toSigma_sā‚€, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_pullbackHom_assoc, AlgebraicGeometry.QuasiCompactCover.inst, id_sā‚€, AlgebraicGeometry.Scheme.GlueData.openCover_X, AlgebraicGeometry.Scheme.Cover.LocallyDirected.trans_comp, AlgebraicGeometry.Scheme.Cover.functorOfLocallyDirected_map, AlgebraicGeometry.Scheme.directedAffineCover_X, AlgebraicGeometry.Scheme.Cover.property_trans, AlgebraicGeometry.Scheme.Cover.sigma_X, AlgebraicGeometry.Scheme.Cover.nonempty_of_nonempty, AlgebraicGeometry.Scheme.Hom.cover_f, CategoryTheory.MorphismProperty.IsLocalAtSource.iff_of_zeroHypercover, AlgebraicGeometry.Scheme.AffineZariskiSite.directedCover_X, AlgebraicGeometry.Scheme.Cover.ulift_f, AlgebraicGeometry.Scheme.OpenCover.instIsOpenImmersionTrans, isoMk_inv, AlgebraicGeometry.instSurjectiveDescIā‚€SchemeF, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.cocone_ι_transitionMap_assoc, comp_sā‚€, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_Iā‚€, AlgebraicGeometry.Scheme.Cover.ulift_Iā‚€, CategoryTheory.Precoverage.mem_iff_exists_zeroHypercover, AlgebraicGeometry.Scheme.Pullback.openCoverOfRight_X, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_fst_assoc, AlgebraicGeometry.Scheme.AffineZariskiSite.directedCover_f, AlgebraicGeometry.Scheme.IsLocallyDirected.openCover_Iā‚€, AlgebraicGeometry.IsZariskiLocalAtSource.iff_of_openCover, AlgebraicGeometry.Scheme.Hom.iInf_ker_openCover_map_comp_apply, AlgebraicGeometry.Scheme.Cover.pushforwardIso_f, AlgebraicGeometry.Scheme.IsLocallyDirected.openCover_X, bind_toPreZeroHypercover, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_f, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_X, AlgebraicGeometry.Scheme.Cover.toPresieveOver_le_arrows_iff, AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_f, AlgebraicGeometry.Scheme.Cover.gluedCover_f, AlgebraicGeometry.Scheme.Hom.ι_toNormalization_assoc, AlgebraicGeometry.Scheme.Cover.Hom.sigma_hā‚€, AlgebraicGeometry.Scheme.Cover.overEquiv_generate_toPresieveOver_eq_ofArrows, AlgebraicGeometry.Scheme.Cover.LocallyDirected.trans_id, AlgebraicGeometry.Scheme.Cover.toSigma_hā‚€, Small.memā‚€, AlgebraicGeometry.IsLocalAtTarget.iff_of_openCover, AlgebraicGeometry.Scheme.directedAffineCover_trans, AlgebraicGeometry.Scheme.coverOfIsIso_X, AlgebraicGeometry.Scheme.Cover.LocallyDirected.property_trans, AlgebraicGeometry.Scheme.AffineZariskiSite.opensRange_relativeGluingData_map, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.prop_trans, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_snd_assoc, AlgebraicGeometry.Scheme.Cover.coconeOfLocallyDirected_pt, AlgebraicGeometry.Scheme.Cover.exists_eq, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.trans_app_left, AlgebraicGeometry.Scheme.AffineCover.cover_X, AlgebraicGeometry.Scheme.affineBasisCover_obj, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionMap_comp, AlgebraicGeometry.sigmaOpenCover_Iā‚€, AlgebraicGeometry.Scheme.Cover.Hom.sigma_sā‚€, AlgebraicGeometry.Scheme.Cover.sigma_Iā‚€, AlgebraicGeometry.Scheme.instEtaleF, AlgebraicGeometry.Scheme.Cover.pushforwardIso_Iā‚€, reindex_toPreZeroHypercover, AlgebraicGeometry.instIsAffineXSchemeCoverOfIsIsoIsOpenImmersionId, AlgebraicGeometry.Scheme.OpenCover.finiteSubcover_X, AlgebraicGeometry.Scheme.Hom.ι_fromNormalization_assoc, AlgebraicGeometry.Scheme.Cover.trans_comp, singleton_toPreZeroHypercover, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_map, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_Iā‚€, AlgebraicGeometry.Scheme.coverOfIsIso_f, AlgebraicGeometry.Scheme.Hom.cover_Iā‚€, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_snd, AlgebraicGeometry.IsZariskiLocalAtTarget.iff_of_openCover, AlgebraicGeometry.instIsLocallyNoetherianXScheme, AlgebraicGeometry.sigmaOpenCover_f, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_map_assoc, AlgebraicGeometry.isLocallyArtinian_iff_openCover, AlgebraicGeometry.Scheme.AffineOpenCover.openCover_Iā‚€, AlgebraicGeometry.Scheme.exists_cover_of_mem_grothendieckTopology, AlgebraicGeometry.Scheme.OpenCover.restrict_Iā‚€, memā‚€, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft_Iā‚€, AlgebraicGeometry.QuasiCompactCover.homCover, AlgebraicGeometry.Scheme.instIsOpenImmersionF, AlgebraicGeometry.Scheme.affineOpenCover_f, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_f, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_snd, AlgebraicGeometry.Scheme.Cover.pushforwardIso_X, AlgebraicGeometry.Scheme.AffineZariskiSite.PreservesLocalization.opensRange_map, CategoryTheory.ObjectProperty.iff_of_zeroHypercover, AlgebraicGeometry.Scheme.Cover.add_toPreZeroHypercover, AlgebraicGeometry.Scheme.affineBasisCover_map_range, AlgebraicGeometry.Scheme.Cover.map_prop, AlgebraicGeometry.Scheme.Cover.LocallyDirected.w, AlgebraicGeometry.Scheme.grothendieckTopology_cover, AlgebraicGeometry.Scheme.Hom.instIsLocallyDirectedIā‚€DirectedCoverCompFunctorNormalizationGlueDataForget, AlgebraicGeometry.Scheme.Cover.Over.isOver_map, AlgebraicGeometry.Scheme.Cover.mkOfCovers_f, AlgebraicGeometry.Scheme.Hom.ι_fromNormalization, AlgebraicGeometry.Scheme.mem_pretopology_iff, AlgebraicGeometry.Scheme.GlueData.openCover_Iā‚€, AlgebraicGeometry.isLocallyNoetherian_iff_openCover, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_map, TopCat.exists_mem_zeroHypercover_range, AlgebraicGeometry.Scheme.Cover.intersectionOfLocallyDirected_f, map_toPreZeroHypercover, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft_f, AlgebraicGeometry.Scheme.OpenCover.restrict_X, AlgebraicGeometry.Scheme.Cover.mem_pretopology, AlgebraicGeometry.Scheme.openCoverBasicOpenTop_f, AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_fst_assoc, AlgebraicGeometry.Scheme.OpenCover.instIsOpenImmersionMapIā‚€FunctorOfLocallyDirected, AlgebraicGeometry.Scheme.Cover.functorOfLocallyDirectedHomBase_app, AlgebraicGeometry.Scheme.AffineZariskiSite.PreservesLocalization.colimitDesc_preimage, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_obj, CategoryTheory.GrothendieckTopology.OneHypercover.toZeroHypercover_toPreZeroHypercover, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_X, AlgebraicGeometry.Scheme.pretopology_cover, AlgebraicGeometry.Scheme.isAffine_affineCover, AlgebraicGeometry.Scheme.AffineZariskiSite.directedCover_Iā‚€, AlgebraicGeometry.Scheme.AffineOpenCover.openCover_X, comp_hā‚€, AlgebraicGeometry.Scheme.Cover.sigma_f, weaken_toPreZeroHypercover, AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft_X, AlgebraicGeometry.Scheme.Cover.RelativeGluingData.instIsOpenImmersionMapIā‚€Functor, AlgebraicGeometry.Scheme.Pullback.diagonalCover_map, AlgebraicGeometry.Scheme.Cover.ι_fromGlued, AlgebraicGeometry.Scheme.Cover.mem_grothendieckTopology, AlgebraicGeometry.Scheme.isAffine_affineOpenCover
weaken šŸ“–CompOp
1 mathmath: weaken_toPreZeroHypercover

Theorems

NameKindAssumesProvesValidatesDepends On
add_toPreZeroHypercover šŸ“–mathematicalCategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticePresieve
CategoryTheory.PreZeroHypercover.presieveā‚€
toPreZeroHypercover
CategoryTheory.Presieve.singleton
add
CategoryTheory.PreZeroHypercover.add
——
bind_toPreZeroHypercover šŸ“–mathematical—toPreZeroHypercover
bind
CategoryTheory.PreZeroHypercover.bind
CategoryTheory.PreZeroHypercover.X
——
comp_hā‚€ šŸ“–mathematical—CategoryTheory.PreZeroHypercover.Hom.hā‚€
toPreZeroHypercover
CategoryTheory.CategoryStruct.comp
CategoryTheory.Precoverage.ZeroHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.Hom.sā‚€
——
comp_sā‚€ šŸ“–mathematical—CategoryTheory.PreZeroHypercover.Hom.sā‚€
toPreZeroHypercover
CategoryTheory.CategoryStruct.comp
CategoryTheory.Precoverage.ZeroHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
——
id_hā‚€ šŸ“–mathematical—CategoryTheory.PreZeroHypercover.Hom.hā‚€
toPreZeroHypercover
CategoryTheory.CategoryStruct.id
CategoryTheory.Precoverage.ZeroHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.PreZeroHypercover.X
——
id_sā‚€ šŸ“–mathematical—CategoryTheory.PreZeroHypercover.Hom.sā‚€
toPreZeroHypercover
CategoryTheory.CategoryStruct.id
CategoryTheory.Precoverage.ZeroHypercover
CategoryTheory.Category.toCategoryStruct
instCategory
——
instHasPullbackFOfHasPullbacksPresieveā‚€ šŸ“–mathematical—CategoryTheory.Limits.HasPullback
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
—CategoryTheory.Presieve.hasPullback
instHasPullbackFOfHasPullbacksPresieveā‚€_1 šŸ“–mathematical—CategoryTheory.Limits.HasPullback
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
—CategoryTheory.Limits.hasPullback_symmetry
instHasPullbackFOfHasPullbacksPresieveā‚€
instHasPullbacksPresieveā‚€OfHasPullbacks šŸ“–mathematical—CategoryTheory.Presieve.HasPullbacks
CategoryTheory.PreZeroHypercover.presieveā‚€
toPreZeroHypercover
—CategoryTheory.Precoverage.hasPullbacks_of_mem
memā‚€
instSmall šŸ“–mathematical—Small—CategoryTheory.Presieve.exists_eq_ofArrows
CategoryTheory.Category.id_comp
le_antisymm
CategoryTheory.Presieve.ofArrows.mk'
memā‚€
instSmallOfSmallIā‚€ šŸ“–mathematical—Small—CategoryTheory.PreZeroHypercover.presieveā‚€_restrictIndex_equiv
memā‚€
instSmallPullback₁ šŸ“–mathematicalCategoryTheory.Limits.HasPullback
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
Small
pullback₁
—memā‚€
inter_toPreZeroHypercover šŸ“–mathematicalCategoryTheory.Limits.HasPullback
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
inter
CategoryTheory.PreZeroHypercover.inter
——
isoMk_hom šŸ“–mathematical—CategoryTheory.Iso.hom
CategoryTheory.Precoverage.ZeroHypercover
instCategory
isoMk
CategoryTheory.PreZeroHypercover
CategoryTheory.PreZeroHypercover.instCategory
toPreZeroHypercover
——
isoMk_inv šŸ“–mathematical—CategoryTheory.Iso.inv
CategoryTheory.Precoverage.ZeroHypercover
instCategory
isoMk
CategoryTheory.PreZeroHypercover
CategoryTheory.PreZeroHypercover.instCategory
toPreZeroHypercover
——
map_toPreZeroHypercover šŸ“–mathematicalCategoryTheory.Precoverage
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.Precoverage.instPartialOrder
CategoryTheory.Precoverage.comap
toPreZeroHypercover
CategoryTheory.Functor.obj
map
CategoryTheory.PreZeroHypercover.map
——
memā‚€ šŸ“–mathematical—CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.PreZeroHypercover.presieveā‚€
toPreZeroHypercover
——
presieveā‚€_mem_of_iso šŸ“–mathematical—CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.PreZeroHypercover.presieveā‚€
—CategoryTheory.PreZeroHypercover.presieveā‚€_mem_of_iso
memā‚€
pullbackCoverOfLeft_toPreZeroHypercover šŸ“–mathematicalCategoryTheory.Limits.HasPullback
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.Limits.pullback
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Limits.pullback.fst
pullbackCoverOfLeft
CategoryTheory.PreZeroHypercover.pullbackCoverOfLeft
——
pullbackCoverOfRight_toPreZeroHypercover šŸ“–mathematicalCategoryTheory.Limits.HasPullback
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.Limits.pullback
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Limits.pullback.snd
pullbackCoverOfRight
CategoryTheory.PreZeroHypercover.pullbackCoverOfRight
——
pullback₁_toPreZeroHypercover šŸ“–mathematicalCategoryTheory.Limits.HasPullback
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
pullback₁
CategoryTheory.PreZeroHypercover.pullback₁
——
pullbackā‚‚_toPreZeroHypercover šŸ“–mathematicalCategoryTheory.Limits.HasPullback
CategoryTheory.PreZeroHypercover.X
toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
pullbackā‚‚
CategoryTheory.PreZeroHypercover.pullbackā‚‚
——
reindex_toPreZeroHypercover šŸ“–mathematical—toPreZeroHypercover
reindex
CategoryTheory.PreZeroHypercover.reindex
——
restrictIndexOfSmall_toPreZeroHypercover šŸ“–mathematical—toPreZeroHypercover
restrictIndexOfSmall
CategoryTheory.PreZeroHypercover.restrictIndex
Small.Index
Small.restrictFun
——
singleton_toPreZeroHypercover šŸ“–mathematicalCategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.Presieve.singleton
toPreZeroHypercover
singleton
CategoryTheory.PreZeroHypercover.singleton
——
sum_toPreZeroHypercover šŸ“–mathematical—toPreZeroHypercover
sum
CategoryTheory.PreZeroHypercover.sum
——
weaken_toPreZeroHypercover šŸ“–mathematicalCategoryTheory.Precoverage
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.Precoverage.instPartialOrder
toPreZeroHypercover
weaken
——

CategoryTheory.Precoverage.ZeroHypercover.Small

Definitions

NameCategoryTheorems
restrictFun šŸ“–CompOp
2 mathmath: CategoryTheory.Precoverage.ZeroHypercover.restrictIndexOfSmall_toPreZeroHypercover, memā‚€

Theorems

NameKindAssumesProvesValidatesDepends On
exists_restrictIndex_mem šŸ“–mathematical—CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.PreZeroHypercover.presieveā‚€
CategoryTheory.PreZeroHypercover.restrictIndex
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
——
memā‚€ šŸ“–mathematical—CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.PreZeroHypercover.presieveā‚€
CategoryTheory.PreZeroHypercover.restrictIndex
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
Index
restrictFun
—exists_restrictIndex_mem

CategoryTheory.Presieve

Definitions

NameCategoryTheorems
preZeroHypercover šŸ“–CompOp
4 mathmath: preZeroHypercover_Iā‚€, preZeroHypercover_X, preZeroHypercover_f, presieveā‚€_preZeroHypercover

Theorems

NameKindAssumesProvesValidatesDepends On
exists_eq_preZeroHypercover šŸ“–mathematical—CategoryTheory.PreZeroHypercover.presieve₀—presieveā‚€_preZeroHypercover
preZeroHypercover_Iā‚€ šŸ“–mathematical—CategoryTheory.PreZeroHypercover.Iā‚€
preZeroHypercover
Set.Elem
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
uncurry
——
preZeroHypercover_X šŸ“–mathematical—CategoryTheory.PreZeroHypercover.X
preZeroHypercover
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Set
Set.instMembership
uncurry
——
preZeroHypercover_f šŸ“–mathematical—CategoryTheory.PreZeroHypercover.f
preZeroHypercover
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Set
Set.instMembership
uncurry
——
presieveā‚€_preZeroHypercover šŸ“–mathematical—CategoryTheory.PreZeroHypercover.presieveā‚€
preZeroHypercover
—le_antisymm

---

← Back to Index