Documentation Verification Report

JointlySurjective

πŸ“ Source: Mathlib/CategoryTheory/Sites/JointlySurjective.lean

Statistics

MetricCount
DefinitionsJointlySurjective, jointlySurjectivePrecoverage
2
Theoremsmem_comap_jointlySurjectivePrecoverage_iff, ofArrows_mem_comap_jointlySurjectivePrecoverage_iff, instHasIsosJointlySurjectivePrecoverage, instIsStableUnderCompositionJointlySurjectivePrecoverage, instIsStableUnderSupJointlySurjectivePrecoverage, instSmallJointlySurjectivePrecoverage, mem_jointlySurjectivePrecoverage_iff, ofArrows_mem_jointlySurjectivePrecoverage_iff, singleton_mem_jointlySurjectivePrecoverage_iff, instIsStableUnderBaseChangeJointlySurjectivePrecoverage, isStableUnderBaseChange_comap_jointlySurjectivePrecoverage
11
Total13

AlgebraicGeometry.Scheme

Definitions

NameCategoryTheorems
JointlySurjective πŸ“–CompData
1 mathmath: instJointlySurjectivePrecoverage

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
instIsStableUnderBaseChangeJointlySurjectivePrecoverage πŸ“–mathematicalβ€”Precoverage.IsStableUnderBaseChange
types
Types.jointlySurjectivePrecoverage
β€”Precoverage.comap_id
isStableUnderBaseChange_comap_jointlySurjectivePrecoverage
surjective_of_epi
Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
epi_of_strongEpi
strongEpi_of_isIso
Limits.instIsIsoPullbackComparison
Functor.corepresentable_preservesLimit
instIsCorepresentableIdType
isStableUnderBaseChange_comap_jointlySurjectivePrecoverage πŸ“–mathematicalFunctor.obj
types
Limits.pullback
Functor.map
Limits.Types.hasLimit
Limits.WalkingCospan
Limits.WidePullbackShape.category
Limits.WalkingPair
UnivLE.small
univLE_of_max
UnivLE.self
Limits.cospan
Limits.pullbackComparison
Precoverage.IsStableUnderBaseChange
Precoverage.comap
Types.jointlySurjectivePrecoverage
β€”Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
Precoverage.mem_comap_iff
Presieve.map_ofArrows
Types.ofArrows_mem_jointlySurjectivePrecoverage_iff
IsPullback.hasPullback
Limits.pullbackComparison_comp_fst
IsPullback.isoPullback_hom_fst
types_comp
Function.comp_assoc
Set.range_comp
Function.Surjective.range_eq
surjective_of_epi
epi_of_strongEpi
strongEpi_of_isIso
Functor.map_isIso
Iso.isIso_hom
Set.image_univ
Limits.Types.range_pullbackFst

CategoryTheory.Presieve

Theorems

NameKindAssumesProvesValidatesDepends On
mem_comap_jointlySurjectivePrecoverage_iff πŸ“–mathematicalβ€”CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.Precoverage.comap
CategoryTheory.types
CategoryTheory.Types.jointlySurjectivePrecoverage
CategoryTheory.Functor.obj
Set.range
CategoryTheory.Functor.map
β€”CategoryTheory.Precoverage.mem_comap_iff
ofArrows_mem_comap_jointlySurjectivePrecoverage_iff πŸ“–mathematicalβ€”CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.Precoverage.comap
CategoryTheory.types
CategoryTheory.Types.jointlySurjectivePrecoverage
ofArrows
CategoryTheory.Functor.obj
Set.range
CategoryTheory.Functor.map
β€”map_ofArrows

CategoryTheory.Types

Definitions

NameCategoryTheorems
jointlySurjectivePrecoverage πŸ“–CompOp
11 mathmath: CategoryTheory.isStableUnderBaseChange_comap_jointlySurjectivePrecoverage, mem_jointlySurjectivePrecoverage_iff, CategoryTheory.Presieve.ofArrows_mem_comap_jointlySurjectivePrecoverage_iff, singleton_mem_jointlySurjectivePrecoverage_iff, CategoryTheory.instIsStableUnderBaseChangeJointlySurjectivePrecoverage, CategoryTheory.Presieve.mem_comap_jointlySurjectivePrecoverage_iff, instIsStableUnderCompositionJointlySurjectivePrecoverage, instSmallJointlySurjectivePrecoverage, instHasIsosJointlySurjectivePrecoverage, instIsStableUnderSupJointlySurjectivePrecoverage, ofArrows_mem_jointlySurjectivePrecoverage_iff

Theorems

NameKindAssumesProvesValidatesDepends On
instHasIsosJointlySurjectivePrecoverage πŸ“–mathematicalβ€”CategoryTheory.Precoverage.HasIsos
CategoryTheory.types
jointlySurjectivePrecoverage
β€”CategoryTheory.surjective_of_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
instIsStableUnderCompositionJointlySurjectivePrecoverage πŸ“–mathematicalβ€”CategoryTheory.Precoverage.IsStableUnderComposition
CategoryTheory.types
jointlySurjectivePrecoverage
β€”β€”
instIsStableUnderSupJointlySurjectivePrecoverage πŸ“–mathematicalβ€”CategoryTheory.Precoverage.IsStableUnderSup
CategoryTheory.types
jointlySurjectivePrecoverage
β€”β€”
instSmallJointlySurjectivePrecoverage πŸ“–mathematicalβ€”CategoryTheory.Precoverage.Small
CategoryTheory.types
jointlySurjectivePrecoverage
β€”ofArrows_mem_jointlySurjectivePrecoverage_iff
CategoryTheory.Precoverage.ZeroHypercover.memβ‚€
mem_jointlySurjectivePrecoverage_iff πŸ“–mathematicalβ€”CategoryTheory.Presieve
CategoryTheory.types
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
jointlySurjectivePrecoverage
Set.range
β€”β€”
ofArrows_mem_jointlySurjectivePrecoverage_iff πŸ“–mathematicalβ€”CategoryTheory.Presieve
CategoryTheory.types
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
jointlySurjectivePrecoverage
CategoryTheory.Presieve.ofArrows
Set.range
β€”β€”
singleton_mem_jointlySurjectivePrecoverage_iff πŸ“–mathematicalβ€”CategoryTheory.Presieve
CategoryTheory.types
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
jointlySurjectivePrecoverage
CategoryTheory.Presieve.singleton
β€”mem_jointlySurjectivePrecoverage_iff
Function.Surjective.range_eq

---

← Back to Index