Documentation Verification Report

LocallyInjective

📁 Source: Mathlib/CategoryTheory/Sites/LocallyInjective.lean

Statistics

MetricCount
DefinitionsIsLocallyInjective, equalizerSieve, IsLocallyInjective
3
TheoremsequalizerSieve_mem, equalizerSieve_apply, equalizerSieve_eq_top_iff, equalizerSieve_mem, equalizerSieve_mem_of_equalizerSieve_app_mem, equalizerSieve_self_eq_top, instIsLocallyInjectiveHomιOpposite, instIsLocallyInjectiveOfIsIsoFunctorOpposite, isLocallyInjective_comp, isLocallyInjective_comp_iff, isLocallyInjective_forget, isLocallyInjective_forget_iff, isLocallyInjective_iff_equalizerSieve_mem_imp, isLocallyInjective_iff_injective_of_separated, isLocallyInjective_iff_of_fac, isLocallyInjective_of_injective, isLocallyInjective_of_isLocallyInjective, isLocallyInjective_of_isLocallyInjective_fac, isLocallyInjective_toPlus, isLocallyInjective_toSheafify, isLocallyInjective_toSheafify', instIsLocallyInjectiveHomImageι, isLocallyInjective_forget, isLocallyInjective_iff_injective, isLocallyInjective_of_iso, isLocallyInjective_sheafToPresheaf_map_iff, mono_of_injective, mono_of_isLocallyInjective
28
Total31

CategoryTheory.Presheaf

Definitions

NameCategoryTheorems
IsLocallyInjective 📖CompData
27 mathmath: isLocallyInjective_of_isLocallyInjective, CategoryTheory.GrothendieckTopology.instIsLocallyInjectiveToSheafify, isLocallyInjective_iff_equalizerSieve_mem_imp, isLocallyInjective_presheafToSheaf_map_iff, isLocallyInjective_of_whisker, isLocallyInjective_of_isLocallyInjective_of_isLocallySurjective_fac, isLocallyInjective_toSheafify', isLocallyInjective_whisker, CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective.iff, isLocallyInjective_toSheafify, instIsLocallyInjectiveOfIsIsoFunctorOpposite, isLocallyInjective_of_isLocallyInjective_of_isLocallySurjective, isLocallyInjective_whisker_iff, isLocallyInjective_forget_iff, isLocallyInjective_comp_iff, CategoryTheory.GrothendieckTopology.W.isLocallyInjective, CategoryTheory.Sheaf.isLocallyInjective_sheafToPresheaf_map_iff, isLocallyInjective_iff_of_fac, comp_isLocallyInjective_iff, instIsLocallyInjectiveHomιOpposite, isLocallyInjective_toPlus, isLocallyInjective_forget, isLocallyInjective_iff_injective_of_separated, isLocallyInjective_of_isLocallyInjective_fac, isLocallyInjective_comp, CategoryTheory.GrothendieckTopology.W_iff_isLocallyBijective, isLocallyInjective_of_injective
equalizerSieve 📖CompOp
7 mathmath: isLocallyInjective_iff_equalizerSieve_mem_imp, equalizerSieve_self_eq_top, IsLocallyInjective.equalizerSieve_mem, equalizerSieve_mem, equalizerSieve_apply, equalizerSieve_eq_top_iff, CategoryTheory.Sieve.equalizer_eq_equalizerSieve

Theorems

NameKindAssumesProvesValidatesDepends On
equalizerSieve_apply 📖mathematicalCategoryTheory.Sieve.arrows
Opposite.unop
equalizerSieve
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
equalizerSieve_eq_top_iff 📖mathematicalequalizerSieve
Top.top
CategoryTheory.Sieve
Opposite.unop
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.Sieve.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Functor.map_id
CategoryTheory.id_apply
equalizerSieve_self_eq_top
equalizerSieve_mem 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.Sieve
Opposite.unop
Set
Set.instMembership
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
equalizerSieve
IsLocallyInjective.equalizerSieve_mem
equalizerSieve_mem_of_equalizerSieve_app_mem 📖CategoryTheory.Sieve
Opposite.unop
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
equalizerSieve
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
isLocallyInjective_iff_equalizerSieve_mem_imp
equalizerSieve_self_eq_top 📖mathematicalequalizerSieve
Top.top
CategoryTheory.Sieve
Opposite.unop
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.Sieve.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Sieve.ext
instIsLocallyInjectiveHomιOpposite 📖mathematicalIsLocallyInjective
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Subfunctor.toFunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Subfunctor.ι
isLocallyInjective_of_injective
instIsLocallyInjectiveOfIsIsoFunctorOpposite 📖mathematicalIsLocallyInjectiveisLocallyInjective_of_injective
Function.Bijective.injective
CategoryTheory.isIso_iff_bijective
CategoryTheory.Functor.map_isIso
CategoryTheory.NatIso.isIso_app_of_isIso
isLocallyInjective_comp 📖mathematicalIsLocallyInjective
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
equalizerSieve_mem_of_equalizerSieve_app_mem
equalizerSieve_mem
CategoryTheory.comp_apply
isLocallyInjective_comp_iff 📖mathematicalIsLocallyInjective
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
isLocallyInjective_iff_of_fac
isLocallyInjective_forget 📖mathematicalIsLocallyInjective
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.forget
CategoryTheory.Functor.whiskerRight
equalizerSieve_mem
isLocallyInjective_forget_iff 📖mathematicalIsLocallyInjective
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.forget
CategoryTheory.Functor.whiskerRight
equalizerSieve_mem
isLocallyInjective_forget
isLocallyInjective_iff_equalizerSieve_mem_imp 📖mathematicalIsLocallyInjective
CategoryTheory.Sieve
Opposite.unop
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
equalizerSieve
CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.Functor.map_comp
CategoryTheory.comp_apply
CategoryTheory.GrothendieckTopology.transitive
CategoryTheory.Sieve.le_pullback_bind
equalizerSieve_mem
CategoryTheory.NatTrans.naturality_apply
equalizerSieve_self_eq_top
isLocallyInjective_iff_injective_of_separated 📖mathematicalCategoryTheory.Presieve.IsSeparated
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.forget
IsLocallyInjective
CategoryTheory.Functor.obj
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.Presieve.IsSeparatedFor.ext
equalizerSieve_mem
isLocallyInjective_of_injective
isLocallyInjective_iff_of_fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
IsLocallyInjectiveisLocallyInjective_of_isLocallyInjective_fac
isLocallyInjective_comp
isLocallyInjective_of_injective 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
IsLocallyInjectiveCategoryTheory.Sieve.ext
CategoryTheory.NatTrans.naturality_apply
CategoryTheory.GrothendieckTopology.top_mem
isLocallyInjective_of_isLocallyInjective 📖mathematicalIsLocallyInjectiveequalizerSieve_mem
CategoryTheory.comp_apply
isLocallyInjective_of_isLocallyInjective_fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
IsLocallyInjectiveisLocallyInjective_of_isLocallyInjective
isLocallyInjective_toPlus 📖mathematicalIsLocallyInjective
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.GrothendieckTopology.plusObj
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
UnivLE.small
UnivLE.self
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
Opposite.small
CategoryTheory.GrothendieckTopology.toPlus
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite.small
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.GrothendieckTopology.Plus.eq_mk_iff_exists
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.GrothendieckTopology.superset_covering
isLocallyInjective_toSheafify 📖mathematicalIsLocallyInjective
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.GrothendieckTopology.sheafify
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
UnivLE.small
UnivLE.self
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
Opposite.small
CategoryTheory.GrothendieckTopology.toSheafify
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite.small
CategoryTheory.GrothendieckTopology.plusMap_toPlus
isLocallyInjective_comp
isLocallyInjective_toPlus
isLocallyInjective_toSheafify' 📖mathematicalIsLocallyInjective
CategoryTheory.sheafify
CategoryTheory.toSheafify
isLocallyInjective_forget_iff
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite.small
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.reflectsIsomorphisms_of_full_and_faithful
CategoryTheory.Types.instFullForgetTypeHom
CategoryTheory.instFaithfulForget
CategoryTheory.sheafComposeIso_hom_fac
CategoryTheory.toSheafify_plusPlusIsoSheafify_hom
isLocallyInjective_comp
isLocallyInjective_toSheafify
instIsLocallyInjectiveOfIsIsoFunctorOpposite
CategoryTheory.Iso.isIso_hom

CategoryTheory.Presheaf.IsLocallyInjective

Theorems

NameKindAssumesProvesValidatesDepends On
equalizerSieve_mem 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.Sieve
Opposite.unop
Set
Set.instMembership
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Presheaf.equalizerSieve

CategoryTheory.Sheaf

Definitions

NameCategoryTheorems
IsLocallyInjective 📖MathDef
9 mathmath: CategoryTheory.Presheaf.isLocallyInjective_presheafToSheaf_map_iff, isLocallyInjective_iff_injective, isLocallyInjective_forget, instIsLocallyInjectiveAppArrowPLocallySurjectiveLocallyInjectiveFunctorialLocallySurjectiveInjectiveFactorization, AlgebraicGeometry.Scheme.LocalRepresentability.instIsLocallyInjectiveHomYonedaGluedToSheaf, isLocallyInjective_sheafToPresheaf_map_iff, isLocallyInjective_of_iso, isLocallyBijective_iff_isIso, instIsLocallyInjectiveHomImageι

Theorems

NameKindAssumesProvesValidatesDepends On
instIsLocallyInjectiveHomImageι 📖mathematicalIsLocallyInjective
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
image
imageι
CategoryTheory.Presheaf.instIsLocallyInjectiveHomιOpposite
isLocallyInjective_forget 📖mathematicalIsLocallyInjective
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.sheafCompose
CategoryTheory.forget
CategoryTheory.Functor.map
CategoryTheory.Presheaf.isLocallyInjective_forget
isLocallyInjective_iff_injective 📖mathematicalIsLocallyInjective
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
val
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
Hom.val
CategoryTheory.Presheaf.isLocallyInjective_iff_injective_of_separated
CategoryTheory.Presieve.IsSheaf.isSeparated
CategoryTheory.isSheaf_iff_isSheaf_of_type
cond
isLocallyInjective_of_iso 📖mathematicalIsLocallyInjectiveCategoryTheory.Presheaf.instIsLocallyInjectiveOfIsIsoFunctorOpposite
CategoryTheory.Functor.map_isIso
isLocallyInjective_sheafToPresheaf_map_iff 📖mathematicalCategoryTheory.Presheaf.IsLocallyInjective
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.sheafToPresheaf
CategoryTheory.Functor.map
IsLocallyInjective
mono_of_injective 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
val
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
Hom.val
CategoryTheory.Mono
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.ConcreteCategory.mono_of_injective
CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.reflectsMonomorphisms_of_reflectsLimitsOfShape
CategoryTheory.Limits.ReflectsFiniteLimits.reflects
CategoryTheory.Limits.instReflectsFiniteLimitsOfReflectsLimits
CategoryTheory.Limits.fullyFaithful_reflectsLimits
CategoryTheory.instFullSheafFunctorOppositeSheafToPresheaf
CategoryTheory.instFaithfulSheafFunctorOppositeSheafToPresheaf
CategoryTheory.NatTrans.mono_of_mono_app
mono_of_isLocallyInjective 📖mathematicalCategoryTheory.Mono
CategoryTheory.Sheaf
instCategorySheaf
mono_of_injective
isLocallyInjective_iff_injective

---

← Back to Index