Documentation Verification Report

LocallySurjective

πŸ“ Source: Mathlib/CategoryTheory/Sites/LocallySurjective.lean

Statistics

MetricCount
DefinitionsIsLocallySurjective, imageSieve, localPreimage, sheafificationIsoImagePresheaf, localPreimage, IsLocallySurjective
6
TheoremsimageSieve_mem, app_localPreimage, comp_isLocallyInjective_iff, comp_isLocallySurjective_iff, imageSieve_app, imageSieve_apply, imageSieve_eq_sieveOfSection, imageSieve_mem, imageSieve_whisker_forget, instIsLocallySurjectiveHomToRangeSheafify, instIsLocallySurjectiveHomWhiskerRightOppositeForget, isLocallyInjective_of_isLocallyInjective_of_isLocallySurjective, isLocallyInjective_of_isLocallyInjective_of_isLocallySurjective_fac, isLocallySurjective_comp, isLocallySurjective_comp_iff, isLocallySurjective_iff_of_fac, isLocallySurjective_iff_range_sheafify_eq_top, isLocallySurjective_iff_range_sheafify_eq_top', isLocallySurjective_iff_whisker_forget, isLocallySurjective_of_isLocallySurjective, isLocallySurjective_of_isLocallySurjective_fac, isLocallySurjective_of_isLocallySurjective_of_isLocallyInjective, isLocallySurjective_of_isLocallySurjective_of_isLocallyInjective_fac, isLocallySurjective_of_iso, isLocallySurjective_of_le, isLocallySurjective_of_surjective, isLocallySurjective_toPlus, isLocallySurjective_toSheafify, isLocallySurjective_toSheafify', isAmalgamation_map_localPreimage, epi_of_isLocallySurjective, epi_of_isLocallySurjective', instIsLocallySurjectiveHomMapTypeSheafComposeForget, instIsLocallySurjectiveHomToImage, isLocallySurjective_comp, isLocallySurjective_iff_epi, isLocallySurjective_iff_isIso, isLocallySurjective_of_iso, isLocallySurjective_sheafToPresheaf_map_iff
39
Total45

CategoryTheory.Presheaf

Definitions

NameCategoryTheorems
IsLocallySurjective πŸ“–CompData
33 mathmath: instIsLocallySurjectiveHomWhiskerRightOppositeForget, CategoryTheory.Sheaf.isLocallySurjective_sheafToPresheaf_map_iff, isLocallySurjective_of_surjective, isLocallySurjective_whisker, comp_isLocallySurjective_iff, isLocallySurjective_toSheafify, isLocallySurjective_comp_iff, isLocallySurjective_toSheafify', CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective.iff, isLocallySurjective_of_isLocallySurjective_of_isLocallyInjective_fac, isLocallySurjective_of_isLocallySurjective_fac, isLocallySurjective_of_isLocallySurjective_of_isLocallyInjective, CategoryTheory.regularTopology.isLocallySurjective_iff, isLocallySurjective_iff_range_sheafify_eq_top, CategoryTheory.regularTopology.isLocallySurjective_sheaf_of_types, isLocallySurjective_iff_range_sheafify_eq_top', isLocallySurjective_iff_whisker_forget, isLocallySurjective_of_whisker, CategoryTheory.extensiveTopology.presheafIsLocallySurjective_iff, isLocallySurjective_comp, isLocallySurjective_of_isLocallySurjective, isLocallySurjective_toPlus, instIsLocallySurjectiveHomToRangeSheafify, isLocallySurjective_whisker_iff, isLocallySurjective_of_le, CategoryTheory.GrothendieckTopology.instIsLocallySurjectiveToSheafify, CategoryTheory.coherentTopology.presheafIsLocallySurjective_iff, isLocallySurjective_iff_of_fac, CategoryTheory.coherentTopology.isLocallySurjective_iff, CategoryTheory.GrothendieckTopology.W.isLocallySurjective, isLocallySurjective_of_iso, CategoryTheory.GrothendieckTopology.W_iff_isLocallyBijective, isLocallySurjective_presheafToSheaf_map_iff
imageSieve πŸ“–CompOp
8 mathmath: imageSieve_app, CategoryTheory.Functor.imageSieve_eq_imageSieve, imageSieve_apply, IsLocallySurjective.imageSieve_mem, imageSieve_eq_sieveOfSection, imageSieve_whisker_forget, CategoryTheory.Presieve.FamilyOfElements.isAmalgamation_map_localPreimage, imageSieve_mem
localPreimage πŸ“–CompOp
1 mathmath: app_localPreimage
sheafificationIsoImagePresheaf πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
app_localPreimage πŸ“–mathematicalCategoryTheory.Sieve.arrows
Opposite.unop
imageSieve
DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
localPreimage
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
comp_isLocallyInjective_iff πŸ“–mathematicalβ€”IsLocallyInjective
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
β€”isLocallyInjective_of_isLocallyInjective_of_isLocallySurjective
isLocallyInjective_comp
comp_isLocallySurjective_iff πŸ“–mathematicalβ€”IsLocallySurjective
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
β€”isLocallySurjective_iff_of_fac
imageSieve_app πŸ“–mathematicalβ€”imageSieve
DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
Top.top
CategoryTheory.Sieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.Sieve.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”CategoryTheory.Sieve.ext
CategoryTheory.NatTrans.naturality_apply
imageSieve_apply πŸ“–mathematicalβ€”CategoryTheory.Sieve.arrows
imageSieve
CategoryTheory.ToType
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
imageSieve_eq_sieveOfSection πŸ“–mathematicalβ€”imageSieve
CategoryTheory.Subfunctor.sieveOfSection
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.forget
CategoryTheory.Subfunctor.range
CategoryTheory.Functor.whiskerRight
Opposite.op
β€”β€”
imageSieve_mem πŸ“–mathematicalβ€”CategoryTheory.Sieve
Opposite.unop
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
imageSieve
β€”IsLocallySurjective.imageSieve_mem
imageSieve_whisker_forget πŸ“–mathematicalβ€”imageSieve
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.forget
CategoryTheory.Functor.whiskerRight
β€”β€”
instIsLocallySurjectiveHomToRangeSheafify πŸ“–mathematicalβ€”IsLocallySurjective
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Subfunctor.toFunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Subfunctor.sheafify
CategoryTheory.Subfunctor.range
CategoryTheory.Subfunctor.toRangeSheafify
β€”CategoryTheory.GrothendieckTopology.superset_covering
instIsLocallySurjectiveHomWhiskerRightOppositeForget πŸ“–mathematicalβ€”IsLocallySurjective
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.forget
CategoryTheory.Functor.whiskerRight
β€”imageSieve_mem
isLocallyInjective_of_isLocallyInjective_of_isLocallySurjective πŸ“–mathematicalβ€”IsLocallyInjectiveβ€”CategoryTheory.GrothendieckTopology.intersection_covering
imageSieve_mem
CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.Functor.map_comp
CategoryTheory.comp_apply
CategoryTheory.NatTrans.naturality_apply
app_localPreimage
CategoryTheory.GrothendieckTopology.transitive
CategoryTheory.Sieve.le_pullback_bind
equalizerSieve_mem
CategoryTheory.ConcreteCategory.comp_apply
isLocallyInjective_of_isLocallyInjective_of_isLocallySurjective_fac πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
IsLocallyInjectiveβ€”isLocallyInjective_of_isLocallyInjective_of_isLocallySurjective
isLocallySurjective_comp πŸ“–mathematicalβ€”IsLocallySurjective
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
β€”CategoryTheory.op_comp
CategoryTheory.Functor.map_comp
CategoryTheory.NatTrans.comp_app
CategoryTheory.ConcreteCategory.comp_apply
CategoryTheory.NatTrans.naturality_apply
CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.GrothendieckTopology.bind_covering
imageSieve_mem
isLocallySurjective_comp_iff πŸ“–mathematicalβ€”IsLocallySurjective
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
β€”isLocallySurjective_of_isLocallySurjective_of_isLocallyInjective
isLocallySurjective_comp
isLocallySurjective_iff_of_fac πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
IsLocallySurjectiveβ€”isLocallySurjective_of_isLocallySurjective_fac
isLocallySurjective_comp
isLocallySurjective_iff_range_sheafify_eq_top πŸ“–mathematicalβ€”IsLocallySurjective
CategoryTheory.Subfunctor.sheafify
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.forget
CategoryTheory.Subfunctor.range
CategoryTheory.Functor.whiskerRight
Top.top
CategoryTheory.Subfunctor
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”IsLocallySurjective.imageSieve_mem
isLocallySurjective_iff_range_sheafify_eq_top' πŸ“–mathematicalβ€”IsLocallySurjective
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Subfunctor.sheafify
CategoryTheory.Subfunctor.range
Opposite
CategoryTheory.Category.opposite
Top.top
CategoryTheory.Subfunctor
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”isLocallySurjective_iff_range_sheafify_eq_top
isLocallySurjective_iff_whisker_forget πŸ“–mathematicalβ€”IsLocallySurjective
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.forget
CategoryTheory.Functor.whiskerRight
β€”β€”
isLocallySurjective_of_isLocallySurjective πŸ“–mathematicalβ€”IsLocallySurjectiveβ€”CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.comp_apply
app_localPreimage
imageSieve_mem
isLocallySurjective_of_isLocallySurjective_fac πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
IsLocallySurjectiveβ€”isLocallySurjective_of_isLocallySurjective
isLocallySurjective_of_isLocallySurjective_of_isLocallyInjective πŸ“–mathematicalβ€”IsLocallySurjectiveβ€”CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.NatTrans.naturality_apply
CategoryTheory.Functor.map_comp
CategoryTheory.comp_apply
CategoryTheory.GrothendieckTopology.transitive
imageSieve_mem
CategoryTheory.Sieve.le_pullback_bind
equalizerSieve_mem
app_localPreimage
CategoryTheory.NatTrans.comp_app
CategoryTheory.ConcreteCategory.comp_apply
isLocallySurjective_of_isLocallySurjective_of_isLocallyInjective_fac πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
IsLocallySurjectiveβ€”isLocallySurjective_of_isLocallySurjective_of_isLocallyInjective
isLocallySurjective_of_iso πŸ“–mathematicalβ€”IsLocallySurjectiveβ€”isLocallySurjective_of_surjective
Function.Bijective.surjective
CategoryTheory.isIso_iff_bijective
CategoryTheory.ConcreteCategory.forget_map_eq_coe
CategoryTheory.Functor.map_isIso
CategoryTheory.NatIso.isIso_app_of_isIso
isLocallySurjective_of_le πŸ“–mathematicalCategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instLEGrothendieckTopology
IsLocallySurjectiveβ€”IsLocallySurjective.imageSieve_mem
isLocallySurjective_of_surjective πŸ“–mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
IsLocallySurjectiveβ€”imageSieve_app
CategoryTheory.GrothendieckTopology.top_mem
isLocallySurjective_toPlus πŸ“–mathematicalβ€”IsLocallySurjective
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.GrothendieckTopology.plusObj
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
UnivLE.small
UnivLE.self
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
Opposite.small
CategoryTheory.GrothendieckTopology.toPlus
β€”CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite.small
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.GrothendieckTopology.Plus.exists_rep
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.GrothendieckTopology.Plus.res_mk_eq_mk_pullback
CategoryTheory.GrothendieckTopology.Plus.eq_mk_iff_exists
le_top
CategoryTheory.Meq.ext
CategoryTheory.Sieve.downward_closed
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_id
isLocallySurjective_toSheafify πŸ“–mathematicalβ€”IsLocallySurjective
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.GrothendieckTopology.sheafify
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
UnivLE.small
UnivLE.self
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
Opposite.small
CategoryTheory.GrothendieckTopology.toSheafify
β€”CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite.small
CategoryTheory.GrothendieckTopology.plusMap_toPlus
isLocallySurjective_comp
isLocallySurjective_toPlus
isLocallySurjective_toSheafify' πŸ“–mathematicalβ€”IsLocallySurjective
CategoryTheory.sheafify
CategoryTheory.toSheafify
β€”isLocallySurjective_iff_whisker_forget
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.instHasSheafifyType
CategoryTheory.sheafComposeIso_hom_fac
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite.small
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.reflectsIsomorphisms_of_full_and_faithful
CategoryTheory.Types.instFullForgetTypeHom
CategoryTheory.instFaithfulForget
CategoryTheory.toSheafify_plusPlusIsoSheafify_hom
isLocallySurjective_comp
isLocallySurjective_toSheafify
isLocallySurjective_of_iso
CategoryTheory.Iso.isIso_hom

CategoryTheory.Presheaf.IsLocallySurjective

Theorems

NameKindAssumesProvesValidatesDepends On
imageSieve_mem πŸ“–mathematicalβ€”CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Presheaf.imageSieve
β€”β€”

CategoryTheory.Presieve.FamilyOfElements

Definitions

NameCategoryTheorems
localPreimage πŸ“–CompOp
1 mathmath: isAmalgamation_map_localPreimage

Theorems

NameKindAssumesProvesValidatesDepends On
isAmalgamation_map_localPreimage πŸ“–mathematicalβ€”IsAmalgamation
Opposite.unop
CategoryTheory.Sieve.arrows
CategoryTheory.Presheaf.imageSieve
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
map
localPreimage
β€”CategoryTheory.Presheaf.app_localPreimage

CategoryTheory.Sheaf

Definitions

NameCategoryTheorems
IsLocallySurjective πŸ“–MathDef
15 mathmath: isLocallySurjective_sheafToPresheaf_map_iff, instIsLocallySurjectiveHomToImage, instIsLocallySurjectiveAppArrowILocallySurjectiveLocallyInjectiveFunctorialLocallySurjectiveInjectiveFactorization, isLocallySurjective_comp, isLocallySurjective_iff_epi, AlgebraicGeometry.Scheme.LocalRepresentability.instIsLocallySurjectiveHomYonedaGluedToSheafOfIsLocallySurjectiveZariskiTopologyDescFunctorOppositeType, isLocallySurjective_iff_epi', LightCondensed.isLocallySurjective_iff_locallySurjective_on_lightProfinite, CategoryTheory.extensiveTopology.isLocallySurjective_iff, instIsLocallySurjectiveHomMapTypeSheafComposeForget, isLocallyBijective_iff_isIso, isLocallySurjective_iff_isIso, CategoryTheory.coherentTopology.isLocallySurjective_iff, isLocallySurjective_of_iso, CategoryTheory.Presheaf.isLocallySurjective_presheafToSheaf_map_iff

Theorems

NameKindAssumesProvesValidatesDepends On
epi_of_isLocallySurjective πŸ“–mathematicalβ€”CategoryTheory.Epi
CategoryTheory.Sheaf
instCategorySheaf
β€”CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
CategoryTheory.instFaithfulSheafSheafCompose
CategoryTheory.instFaithfulForget
epi_of_isLocallySurjective'
instIsLocallySurjectiveHomMapTypeSheafComposeForget
epi_of_isLocallySurjective' πŸ“–mathematicalβ€”CategoryTheory.Epi
CategoryTheory.Sheaf
CategoryTheory.types
instCategorySheaf
β€”hom_ext
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
CategoryTheory.Presieve.IsSeparatedFor.ext
CategoryTheory.Presieve.IsSheaf.isSeparated
CategoryTheory.isSheaf_iff_isSheaf_of_type
cond
CategoryTheory.Presheaf.imageSieve_mem
CategoryTheory.NatTrans.naturality
CategoryTheory.congr_app
CategoryTheory.Functor.congr_map
instIsLocallySurjectiveHomMapTypeSheafComposeForget πŸ“–mathematicalβ€”IsLocallySurjective
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.sheafCompose
CategoryTheory.forget
CategoryTheory.Functor.map
β€”CategoryTheory.Presheaf.isLocallySurjective_iff_whisker_forget
instIsLocallySurjectiveHomToImage πŸ“–mathematicalβ€”IsLocallySurjective
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
image
toImage
β€”CategoryTheory.Presheaf.instIsLocallySurjectiveHomToRangeSheafify
isLocallySurjective_comp πŸ“–mathematicalβ€”IsLocallySurjective
CategoryTheory.CategoryStruct.comp
CategoryTheory.Sheaf
CategoryTheory.Category.toCategoryStruct
instCategorySheaf
β€”CategoryTheory.Presheaf.isLocallySurjective_comp
isLocallySurjective_iff_epi πŸ“–mathematicalβ€”IsLocallySurjective
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Epi
CategoryTheory.Sheaf
instCategorySheaf
β€”epi_of_isLocallySurjective'
CategoryTheory.epi_of_epi_fac
toImage_ΞΉ
isLocallySurjective_iff_isIso
CategoryTheory.isIso_of_mono_of_epi
CategoryTheory.SheafOfTypes.balanced
CategoryTheory.instMonoSheafTypeImageΞΉ
isLocallySurjective_iff_isIso πŸ“–mathematicalβ€”IsLocallySurjective
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.IsIso
CategoryTheory.Sheaf
instCategorySheaf
image
imageΞΉ
β€”imageΞΉ.eq_1
CategoryTheory.Presheaf.isLocallySurjective_iff_range_sheafify_eq_top'
CategoryTheory.Subfunctor.eq_top_iff_isIso
CategoryTheory.isIso_iff_of_reflects_iso
CategoryTheory.instReflectsIsomorphismsSheafFunctorOppositeSheafToPresheaf
isLocallySurjective_of_iso πŸ“–mathematicalβ€”IsLocallySurjectiveβ€”CategoryTheory.Functor.map_isIso
CategoryTheory.Presheaf.isLocallySurjective_of_iso
isLocallySurjective_sheafToPresheaf_map_iff πŸ“–mathematicalβ€”CategoryTheory.Presheaf.IsLocallySurjective
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.sheafToPresheaf
CategoryTheory.Functor.map
IsLocallySurjective
β€”β€”

---

← Back to Index