| Name | Category | Theorems |
SheafCondition 📖 | MathDef | 3 mathmath: sheafCondition_of_sheaf, sheafCondition_iff_bijective_toPullbackObj, sheafCondition_iff_comp_coyoneda
|
mk' 📖 | CompOp | 1 mathmath: mk'_toSquare
|
mk_of_isPullback 📖 | CompOp | 1 mathmath: mk_of_isPullback_toSquare
|
shortComplex 📖 | CompOp | 11 mathmath: shortComplex_X₃, shortComplex_X₁, biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, shortComplex_shortExact, mk₀_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, instEpiSheafAddCommGrpCatGShortComplex, shortComplex_g, shortComplex_f, instMonoSheafAddCommGrpCatFShortComplex, shortComplex_X₂, shortComplex_exact
|
toPullbackObj 📖 | CompOp | 2 mathmath: sheafCondition_iff_bijective_toPullbackObj, SheafCondition.bijective_toPullbackObj
|
toSquare 📖 | CompOp | 27 mathmath: shortComplex_X₃, Opens.mayerVietorisSquare_X₃, shortComplex_X₁, biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, isPushout, mono_f₁₃, fromBiprod_δ_assoc, mk₀_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, mk'_toSquare, Opens.mayerVietorisSquare_X₂, Opens.coe_mayerVietorisSquare_X₁, δ_toBiprod_assoc, δ_toBiprod, sheafCondition_iff_bijective_toPullbackObj, mk_of_isPullback_toSquare, fromBiprod_biprodIsoProd_inv_apply, shortComplex_g, isPushoutAddCommGrpFreeSheaf, toBiprod_fromBiprod_assoc, shortComplex_f, Opens.mayerVietorisSquare'_toSquare, Opens.coe_mayerVietorisSquare_X₄, SheafCondition.bijective_toPullbackObj, toBiprod_fromBiprod, shortComplex_X₂, fromBiprod_δ, toBiprod_apply
|