Documentation Verification Report

MayerVietorisSquare

📁 Source: Mathlib/CategoryTheory/Sites/MayerVietorisSquare.lean

Statistics

MetricCount
DefinitionsMayerVietorisSquare, SheafCondition, glue, mk', mk_of_isPullback, shortComplex, toPullbackObj, toSquare
8
Theoremsbijective_toPullbackObj, ext, map_f₂₄_op_glue, map_f₃₄_op_glue, instEpiSheafAddCommGrpCatGShortComplex, instMonoSheafAddCommGrpCatFShortComplex, isPushout, isPushoutAddCommGrpFreeSheaf, mk'_toSquare, mk_of_isPullback_toSquare, mono_f₁₃, sheafCondition_iff_bijective_toPullbackObj, sheafCondition_iff_comp_coyoneda, sheafCondition_of_sheaf, shortComplex_X₁, shortComplex_X₂, shortComplex_X₃, shortComplex_exact, shortComplex_f, shortComplex_g, shortComplex_shortExact, isPullback_square_op_map_yoneda_presheafToSheaf_yoneda_iff
22
Total30

CategoryTheory.GrothendieckTopology

Definitions

NameCategoryTheorems
MayerVietorisSquare 📖CompData

CategoryTheory.GrothendieckTopology.MayerVietorisSquare

Definitions

NameCategoryTheorems
SheafCondition 📖MathDef
3 mathmath: sheafCondition_of_sheaf, sheafCondition_iff_bijective_toPullbackObj, sheafCondition_iff_comp_coyoneda
mk' 📖CompOp
1 mathmath: mk'_toSquare
mk_of_isPullback 📖CompOp
1 mathmath: mk_of_isPullback_toSquare
shortComplex 📖CompOp
11 mathmath: shortComplex_X₃, shortComplex_X₁, biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, shortComplex_shortExact, mk₀_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, instEpiSheafAddCommGrpCatGShortComplex, shortComplex_g, shortComplex_f, instMonoSheafAddCommGrpCatFShortComplex, shortComplex_X₂, shortComplex_exact
toPullbackObj 📖CompOp
2 mathmath: sheafCondition_iff_bijective_toPullbackObj, SheafCondition.bijective_toPullbackObj
toSquare 📖CompOp
27 mathmath: shortComplex_X₃, Opens.mayerVietorisSquare_X₃, shortComplex_X₁, biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, isPushout, mono_f₁₃, fromBiprod_δ_assoc, mk₀_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, mk'_toSquare, Opens.mayerVietorisSquare_X₂, Opens.coe_mayerVietorisSquare_X₁, δ_toBiprod_assoc, δ_toBiprod, sheafCondition_iff_bijective_toPullbackObj, mk_of_isPullback_toSquare, fromBiprod_biprodIsoProd_inv_apply, shortComplex_g, isPushoutAddCommGrpFreeSheaf, toBiprod_fromBiprod_assoc, shortComplex_f, Opens.mayerVietorisSquare'_toSquare, Opens.coe_mayerVietorisSquare_X₄, SheafCondition.bijective_toPullbackObj, toBiprod_fromBiprod, shortComplex_X₂, fromBiprod_δ, toBiprod_apply

Theorems

NameKindAssumesProvesValidatesDepends On
instEpiSheafAddCommGrpCatGShortComplex 📖mathematicalCategoryTheory.Epi
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.instPreadditiveSheaf
AddCommGrpCat.instPreadditive
shortComplex
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.zero
CategoryTheory.ShortComplex.exact_and_epi_g_iff_g_is_cokernel
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
isPushoutAddCommGrpFreeSheaf
instMonoSheafAddCommGrpCatFShortComplex 📖mathematicalCategoryTheory.Mono
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.instPreadditiveSheaf
AddCommGrpCat.instPreadditive
shortComplex
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.Limits.biprod.lift_snd
CategoryTheory.Preadditive.instMonoNegHom
CategoryTheory.Functor.map_mono
CategoryTheory.Functor.instPreservesMonomorphisms
CategoryTheory.Limits.HasZeroObject.instFunctor
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.presheafToSheaf_additive
CategoryTheory.Functor.preservesHomologyOfExact
CategoryTheory.instPreservesFiniteLimitsFunctorOppositeSheafPresheafToSheaf
CategoryTheory.Limits.PreservesColimits.preservesFiniteColimits
CategoryTheory.Functor.instPreservesColimitsOfSizeOfIsLeftAdjoint
CategoryTheory.instIsLeftAdjointFunctorOppositeSheafPresheafToSheaf
CategoryTheory.instMonoFunctorWhiskerRightOfPreservesMonomorphisms
CategoryTheory.Limits.Types.instHasPullbacksType
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.yonedaFunctor_preservesLimits
mono_f₁₃
AddCommGrpCat.instPreservesMonomorphismsFree
CategoryTheory.mono_of_mono
isPushout 📖mathematicalCategoryTheory.Square.IsPushout
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Square.map
toSquare
CategoryTheory.Functor.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.presheafToSheaf
isPushoutAddCommGrpFreeSheaf 📖mathematicalCategoryTheory.Square.IsPushout
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Square.map
toSquare
CategoryTheory.Functor.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
AddCommGrpCat.free
CategoryTheory.presheafToSheaf
CategoryTheory.Square.IsPushout.of_iso
CategoryTheory.Square.IsPushout.map
isPushout
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Sheaf.instIsLeftAdjointComposeAndSheafify
AddCommGrpCat.instIsLeftAdjointFree
CategoryTheory.Sheaf.instPreservesSheafificationOfIsLeftAdjoint
mk'_toSquare 📖mathematicalCategoryTheory.Square.IsPullback
CategoryTheory.types
CategoryTheory.Square.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Square.op
CategoryTheory.Sheaf.val
toSquare
mk'
mk_of_isPullback_toSquare 📖mathematicalCategoryTheory.Square.IsPullback
CategoryTheory.Sieve
CategoryTheory.Square.X₄
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.ofTwoArrows
CategoryTheory.Square.X₂
CategoryTheory.Square.X₃
CategoryTheory.Square.f₂₄
CategoryTheory.Square.f₃₄
toSquare
mk_of_isPullback
mono_f₁₃ 📖mathematicalCategoryTheory.Mono
CategoryTheory.Square.X₁
toSquare
CategoryTheory.Square.X₃
CategoryTheory.Square.f₁₃
sheafCondition_iff_bijective_toPullbackObj 📖mathematicalSheafCondition
CategoryTheory.types
Function.Bijective
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Square.X₄
toSquare
CategoryTheory.Limits.Types.PullbackObj
CategoryTheory.Square.X₂
CategoryTheory.Square.X₃
CategoryTheory.Square.X₁
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.f₁₂
CategoryTheory.Square.f₁₃
toPullbackObj
sheafCondition_iff_comp_coyoneda 📖mathematicalSheafCondition
CategoryTheory.types
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
CategoryTheory.Square.isPullback_iff_map_coyoneda_isPullback
sheafCondition_of_sheaf 📖mathematicalSheafCondition
CategoryTheory.Sheaf.val
sheafCondition_iff_comp_coyoneda
CategoryTheory.isSheaf_iff_isSheaf_of_type
CategoryTheory.Sheaf.cond
CategoryTheory.Sheaf.isPullback_square_op_map_yoneda_presheafToSheaf_yoneda_iff
CategoryTheory.Square.IsPullback.map
CategoryTheory.Square.IsPushout.op
isPushout
CategoryTheory.yoneda_preservesLimit
shortComplex_X₁ 📖mathematicalCategoryTheory.ShortComplex.X₁
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.instPreadditiveSheaf
AddCommGrpCat.instPreadditive
shortComplex
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.presheafToSheaf
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.yoneda
CategoryTheory.Square.X₁
toSquare
AddCommGrpCat.free
shortComplex_X₂ 📖mathematicalCategoryTheory.ShortComplex.X₂
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.instPreadditiveSheaf
AddCommGrpCat.instPreadditive
shortComplex
CategoryTheory.Limits.biprod
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.presheafToSheaf
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.yoneda
CategoryTheory.Square.X₂
toSquare
AddCommGrpCat.free
CategoryTheory.Square.X₃
shortComplex_X₃ 📖mathematicalCategoryTheory.ShortComplex.X₃
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.instPreadditiveSheaf
AddCommGrpCat.instPreadditive
shortComplex
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.presheafToSheaf
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.yoneda
CategoryTheory.Square.X₄
toSquare
AddCommGrpCat.free
shortComplex_exact 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.instPreadditiveSheaf
AddCommGrpCat.instPreadditive
shortComplex
CategoryTheory.ShortComplex.exact_of_g_is_cokernel
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
isPushoutAddCommGrpFreeSheaf
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
shortComplex_f 📖mathematicalCategoryTheory.ShortComplex.f
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.instPreadditiveSheaf
AddCommGrpCat.instPreadditive
shortComplex
CategoryTheory.Limits.biprod.lift
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.presheafToSheaf
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.yoneda
CategoryTheory.Square.X₁
toSquare
AddCommGrpCat.free
CategoryTheory.Square.X₂
CategoryTheory.Square.X₃
CategoryTheory.Functor.map
CategoryTheory.Functor.whiskerRight
CategoryTheory.Square.f₁₂
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
NegZeroClass.toNeg
CategoryTheory.Square.map
CategoryTheory.Functor.whiskeringRight
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.Square.f₁₃
CategoryTheory.instHasWeakSheafifyOfHasSheafify
shortComplex_g 📖mathematicalCategoryTheory.ShortComplex.g
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.instPreadditiveSheaf
AddCommGrpCat.instPreadditive
shortComplex
CategoryTheory.Limits.biprod.desc
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.presheafToSheaf
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.yoneda
CategoryTheory.Square.X₄
toSquare
AddCommGrpCat.free
CategoryTheory.Square.X₂
CategoryTheory.Square.X₃
CategoryTheory.Functor.map
CategoryTheory.Functor.whiskerRight
CategoryTheory.Square.f₂₄
CategoryTheory.Square.f₃₄
CategoryTheory.instHasWeakSheafifyOfHasSheafify
shortComplex_shortExact 📖mathematicalCategoryTheory.ShortComplex.ShortExact
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.instPreadditiveSheaf
AddCommGrpCat.instPreadditive
shortComplex
shortComplex_exact
instMonoSheafAddCommGrpCatFShortComplex
instEpiSheafAddCommGrpCatGShortComplex

CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition

Definitions

NameCategoryTheorems
glue 📖CompOp
2 mathmath: map_f₂₄_op_glue, map_f₃₄_op_glue

Theorems

NameKindAssumesProvesValidatesDepends On
bijective_toPullbackObj 📖mathematicalCategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition
CategoryTheory.types
Function.Bijective
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Square.X₄
CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toSquare
CategoryTheory.Limits.Types.PullbackObj
CategoryTheory.Square.X₂
CategoryTheory.Square.X₃
CategoryTheory.Square.X₁
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.f₁₂
CategoryTheory.Square.f₁₃
CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toPullbackObj
CategoryTheory.GrothendieckTopology.MayerVietorisSquare.sheafCondition_iff_bijective_toPullbackObj
ext 📖CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition
CategoryTheory.types
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Square.X₄
CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toSquare
CategoryTheory.Square.X₂
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.f₂₄
CategoryTheory.Square.X₃
CategoryTheory.Square.f₃₄
Function.Bijective.injective
bijective_toPullbackObj
map_f₂₄_op_glue 📖mathematicalCategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition
CategoryTheory.types
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Square.X₂
CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toSquare
CategoryTheory.Square.X₁
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.f₁₂
CategoryTheory.Square.X₃
CategoryTheory.Square.f₁₃
CategoryTheory.Square.X₄
CategoryTheory.Square.f₂₄
glue
CategoryTheory.Limits.PullbackCone.IsLimit.equivPullbackObj_symm_apply_fst
map_f₃₄_op_glue 📖mathematicalCategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition
CategoryTheory.types
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Square.X₂
CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toSquare
CategoryTheory.Square.X₁
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.f₁₂
CategoryTheory.Square.X₃
CategoryTheory.Square.f₁₃
CategoryTheory.Square.X₄
CategoryTheory.Square.f₃₄
glue
CategoryTheory.Limits.PullbackCone.IsLimit.equivPullbackObj_symm_apply_snd

CategoryTheory.Sheaf

Theorems

NameKindAssumesProvesValidatesDepends On
isPullback_square_op_map_yoneda_presheafToSheaf_yoneda_iff 📖mathematicalCategoryTheory.Square.IsPullback
CategoryTheory.types
CategoryTheory.Square.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Square.op
CategoryTheory.Functor.comp
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.Functor.op
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.presheafToSheaf
CategoryTheory.Functor.obj
val
CategoryTheory.Square.IsPullback.iff_of_equiv
CategoryTheory.yonedaEquiv_naturality
CategoryTheory.Adjunction.homEquiv_naturality_left

---

← Back to Index