Documentation Verification Report

Monoidal

📁 Source: Mathlib/CategoryTheory/Sites/Monoidal.lean

Statistics

MetricCount
DefinitionsfunctorEnrichedHomCoyonedaObjEquiv, braidedCategory, instBraidedFunctorOppositePresheafToSheaf, instMonoidalFunctorOppositePresheafToSheaf, monoidalCategory, symmetricCategory
6
Theoremsmonoidal, transport_isMonoidal, whiskerLeft, whiskerRight, functorEnrichedHomCoyonedaObjEquiv_naturality, isSheaf_functorEnrichedHom
6
Total12

CategoryTheory.GrothendieckTopology.W

Theorems

NameKindAssumesProvesValidatesDepends On
monoidal 📖mathematicalCategoryTheory.Enriched.FunctorCategory.HasFunctorEnrichedHom
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MonoidalClosed.enrichedOrdinaryCategorySelf
CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom
CategoryTheory.MorphismProperty.IsMonoidal
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.GrothendieckTopology.W
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.ObjectProperty.instIsMultiplicativeIsLocal
whiskerLeft
whiskerRight
transport_isMonoidal 📖mathematicalCategoryTheory.MorphismProperty.IsMonoidal
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.GrothendieckTopology.W
CategoryTheory.Monoidal.functorCategoryMonoidal
CategoryTheory.GrothendieckTopology.W_inverseImage_whiskeringLeft
CategoryTheory.MorphismProperty.instIsMonoidalInverseImageOfMonoidalOfRespectsIso
CategoryTheory.ObjectProperty.instRespectsIsoIsLocal
whiskerLeft 📖mathematicalCategoryTheory.Enriched.FunctorCategory.HasFunctorEnrichedHom
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MonoidalClosed.enrichedOrdinaryCategorySelf
CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom
CategoryTheory.GrothendieckTopology.W
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Presheaf.isSheaf_functorEnrichedHom
Function.Bijective.of_comp_iff'
Equiv.bijective
CategoryTheory.MonoidalClosed.curry_natural_left
Function.Bijective.of_comp_iff
whiskerRight 📖mathematicalCategoryTheory.Enriched.FunctorCategory.HasFunctorEnrichedHom
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MonoidalClosed.enrichedOrdinaryCategorySelf
CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom
CategoryTheory.GrothendieckTopology.W
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.ObjectProperty.instRespectsIsoIsLocal
CategoryTheory.BraidedCategory.braiding_naturality_left
whiskerLeft

CategoryTheory.Presheaf

Definitions

NameCategoryTheorems
functorEnrichedHomCoyonedaObjEquiv 📖CompOp
1 mathmath: functorEnrichedHomCoyonedaObjEquiv_naturality

Theorems

NameKindAssumesProvesValidatesDepends On
functorEnrichedHomCoyonedaObjEquiv_naturality 📖mathematicalCategoryTheory.Enriched.FunctorCategory.HasFunctorEnrichedHom
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MonoidalClosed.enrichedOrdinaryCategorySelf
DFunLike.coe
Equiv
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.comp
CategoryTheory.Enriched.FunctorCategory.functorEnrichedHom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
CategoryTheory.presheafHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
CategoryTheory.Functor.const
EquivLike.toFunLike
Equiv.instEquivLike
functorEnrichedHomCoyonedaObjEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Enriched.FunctorCategory.precompEnrichedHom'
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Under.forget
CategoryTheory.Under.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Iso.refl
CategoryTheory.Functor.map
CategoryTheory.NatTrans.ext'
CategoryTheory.Category.assoc
CategoryTheory.Limits.end_.lift_π
CategoryTheory.eHomWhiskerRight_id
CategoryTheory.eHomWhiskerLeft_id
CategoryTheory.Category.comp_id
isSheaf_functorEnrichedHom 📖mathematicalIsSheaf
CategoryTheory.Enriched.FunctorCategory.HasFunctorEnrichedHom
Opposite
CategoryTheory.Category.opposite
CategoryTheory.MonoidalClosed.enrichedOrdinaryCategorySelf
CategoryTheory.Enriched.FunctorCategory.functorEnrichedHomCategoryTheory.Presieve.isSheaf_iff_of_nat_equiv
functorEnrichedHomCoyonedaObjEquiv_naturality
CategoryTheory.isSheaf_iff_isSheaf_of_type
IsSheaf.hom

CategoryTheory.Sheaf

Definitions

NameCategoryTheorems
braidedCategory 📖CompOp
instBraidedFunctorOppositePresheafToSheaf 📖CompOp
instMonoidalFunctorOppositePresheafToSheaf 📖CompOp
monoidalCategory 📖CompOp
symmetricCategory 📖CompOp

---

← Back to Index