Documentation Verification Report

H1

๐Ÿ“ Source: Mathlib/CategoryTheory/Sites/NonabelianCohomology/H1.lean

Statistics

MetricCount
DefinitionsH1, OneCochain, ev, instGroup, instInv, instMul, instOne, OneCocycle, IsCohomologous, class, instOne, toOneCochain, OneCohomologyRelation, ZeroCochain, instGroupZeroCochain, instOneH1, H1, H1
18
Theoremsinv_apply, mul_apply, one_apply, ev_precomp, ext, ext_iff, inv_ev, mul_ev, one_ev, class_eq, class_eq_iff, equivalence_isCohomologous, ev_refl, ev_symm, ev_trans, one_toOneCochain, refl, trans
18
Total36

CategoryTheory.PresheafOfGroups

Definitions

NameCategoryTheorems
H1 ๐Ÿ“–CompOpโ€”
OneCochain ๐Ÿ“–CompData
4 mathmath: OneCochain.one_ev, OneCocycle.one_toOneCochain, OneCochain.mul_ev, OneCochain.inv_ev
OneCocycle ๐Ÿ“–CompData
2 mathmath: OneCocycle.one_toOneCochain, OneCocycle.equivalence_isCohomologous
OneCohomologyRelation ๐Ÿ“–MathDef
1 mathmath: OneCohomologyRelation.refl
ZeroCochain ๐Ÿ“–CompOp
6 mathmath: Cochainโ‚€.inv_apply, Cochainโ‚€.one_apply, OneCohomologyRelation.refl, OneCohomologyRelation.trans, OneCohomologyRelation.symm, Cochainโ‚€.mul_apply
instGroupZeroCochain ๐Ÿ“–CompOp
6 mathmath: Cochainโ‚€.inv_apply, Cochainโ‚€.one_apply, OneCohomologyRelation.refl, OneCohomologyRelation.trans, OneCohomologyRelation.symm, Cochainโ‚€.mul_apply
instOneH1 ๐Ÿ“–CompOpโ€”

CategoryTheory.PresheafOfGroups.Cochainโ‚€

Theorems

NameKindAssumesProvesValidatesDepends On
inv_apply ๐Ÿ“–mathematicalโ€”CategoryTheory.PresheafOfGroups.ZeroCochain
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
CategoryTheory.PresheafOfGroups.instGroupZeroCochain
GrpCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
GrpCat
GrpCat.instCategory
Opposite.op
GrpCat.str
โ€”โ€”
mul_apply ๐Ÿ“–mathematicalโ€”CategoryTheory.PresheafOfGroups.ZeroCochain
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.PresheafOfGroups.instGroupZeroCochain
GrpCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
GrpCat
GrpCat.instCategory
Opposite.op
GrpCat.str
โ€”โ€”
one_apply ๐Ÿ“–mathematicalโ€”CategoryTheory.PresheafOfGroups.ZeroCochain
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
CategoryTheory.PresheafOfGroups.instGroupZeroCochain
GrpCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
GrpCat
GrpCat.instCategory
Opposite.op
GrpCat.str
โ€”โ€”

CategoryTheory.PresheafOfGroups.OneCochain

Definitions

NameCategoryTheorems
ev ๐Ÿ“–CompOp
8 mathmath: one_ev, CategoryTheory.PresheafOfGroups.OneCocycle.ev_trans, CategoryTheory.PresheafOfGroups.OneCocycle.ev_symm, mul_ev, ev_precomp, ext_iff, CategoryTheory.PresheafOfGroups.OneCocycle.ev_refl, inv_ev
instGroup ๐Ÿ“–CompOpโ€”
instInv ๐Ÿ“–CompOp
1 mathmath: inv_ev
instMul ๐Ÿ“–CompOp
1 mathmath: mul_ev
instOne ๐Ÿ“–CompOp
2 mathmath: one_ev, CategoryTheory.PresheafOfGroups.OneCocycle.one_toOneCochain

Theorems

NameKindAssumesProvesValidatesDepends On
ev_precomp ๐Ÿ“–mathematicalโ€”DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
GrpCat
GrpCat.instCategory
Opposite.op
GrpCat.carrier
CategoryTheory.ConcreteCategory.hom
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
GrpCat.str
MonoidHom.instFunLike
GrpCat.instConcreteCategoryMonoidHomCarrier
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
ev
CategoryTheory.CategoryStruct.comp
โ€”โ€”
ext ๐Ÿ“–โ€”evโ€”โ€”โ€”
ext_iff ๐Ÿ“–mathematicalโ€”evโ€”ext
inv_ev ๐Ÿ“–mathematicalโ€”ev
CategoryTheory.PresheafOfGroups.OneCochain
instInv
GrpCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
GrpCat
GrpCat.instCategory
Opposite.op
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
GrpCat.str
โ€”โ€”
mul_ev ๐Ÿ“–mathematicalโ€”ev
CategoryTheory.PresheafOfGroups.OneCochain
instMul
GrpCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
GrpCat
GrpCat.instCategory
Opposite.op
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
GrpCat.str
โ€”โ€”
one_ev ๐Ÿ“–mathematicalโ€”ev
CategoryTheory.PresheafOfGroups.OneCochain
instOne
GrpCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
GrpCat
GrpCat.instCategory
Opposite.op
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
GrpCat.str
โ€”โ€”

CategoryTheory.PresheafOfGroups.OneCocycle

Definitions

NameCategoryTheorems
IsCohomologous ๐Ÿ“–MathDef
2 mathmath: class_eq_iff, equivalence_isCohomologous
class ๐Ÿ“–CompOp
2 mathmath: IsCohomologous.class_eq, class_eq_iff
instOne ๐Ÿ“–CompOp
1 mathmath: one_toOneCochain
toOneCochain ๐Ÿ“–CompOp
4 mathmath: ev_trans, one_toOneCochain, ev_symm, ev_refl

Theorems

NameKindAssumesProvesValidatesDepends On
class_eq_iff ๐Ÿ“–mathematicalโ€”class
IsCohomologous
โ€”Equivalence.quot_mk_eq_iff
equivalence_isCohomologous
equivalence_isCohomologous ๐Ÿ“–mathematicalโ€”CategoryTheory.PresheafOfGroups.OneCocycle
IsCohomologous
โ€”CategoryTheory.PresheafOfGroups.OneCohomologyRelation.refl
CategoryTheory.PresheafOfGroups.OneCohomologyRelation.symm
CategoryTheory.PresheafOfGroups.OneCohomologyRelation.trans
ev_refl ๐Ÿ“–mathematicalโ€”CategoryTheory.PresheafOfGroups.OneCochain.ev
toOneCochain
GrpCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
GrpCat
GrpCat.instCategory
Opposite.op
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
GrpCat.str
โ€”LeftCancelSemigroup.toIsLeftCancelMul
ev_trans
ev_symm ๐Ÿ“–mathematicalโ€”CategoryTheory.PresheafOfGroups.OneCochain.ev
toOneCochain
GrpCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
GrpCat
GrpCat.instCategory
Opposite.op
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
GrpCat.str
โ€”RightCancelSemigroup.toIsRightCancelMul
ev_trans
ev_refl
inv_mul_cancel
ev_trans ๐Ÿ“–mathematicalโ€”GrpCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
GrpCat
GrpCat.instCategory
Opposite.op
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
GrpCat.str
CategoryTheory.PresheafOfGroups.OneCochain.ev
toOneCochain
โ€”โ€”
one_toOneCochain ๐Ÿ“–mathematicalโ€”toOneCochain
CategoryTheory.PresheafOfGroups.OneCocycle
instOne
CategoryTheory.PresheafOfGroups.OneCochain
CategoryTheory.PresheafOfGroups.OneCochain.instOne
โ€”โ€”

CategoryTheory.PresheafOfGroups.OneCocycle.IsCohomologous

Theorems

NameKindAssumesProvesValidatesDepends On
class_eq ๐Ÿ“–mathematicalCategoryTheory.PresheafOfGroups.OneCocycle.IsCohomologousCategoryTheory.PresheafOfGroups.OneCocycle.classโ€”โ€”

CategoryTheory.PresheafOfGroups.OneCohomologyRelation

Theorems

NameKindAssumesProvesValidatesDepends On
refl ๐Ÿ“–mathematicalโ€”CategoryTheory.PresheafOfGroups.OneCohomologyRelation
CategoryTheory.PresheafOfGroups.ZeroCochain
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
CategoryTheory.PresheafOfGroups.instGroupZeroCochain
โ€”map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
one_mul
mul_one
trans ๐Ÿ“–mathematicalCategoryTheory.PresheafOfGroups.OneCohomologyRelationCategoryTheory.PresheafOfGroups.ZeroCochain
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.PresheafOfGroups.instGroupZeroCochain
โ€”map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
mul_assoc

groupCohomology

Definitions

NameCategoryTheorems
H1 ๐Ÿ“–CompOp
16 mathmath: H1ฯ€_comp_map_assoc, ฯ€_comp_H1Iso_hom_assoc, H1IsoOfIsTrivial_inv_apply, H1IsoOfIsTrivial_H1ฯ€_apply_apply, ฮดโ‚_apply, ฯ€_comp_H1Iso_hom, instEpiModuleCatH1ฯ€, H1ฯ€_eq_zero_iff, H1ฯ€_comp_H1IsoOfIsTrivial_hom_apply, H1ฯ€_comp_map_apply, ฮดโ‚€_apply, ฯ€_comp_H1Iso_hom_apply, H1ฯ€_comp_H1IsoOfIsTrivial_hom, H1ฯ€_comp_map, H1ฯ€_comp_H1IsoOfIsTrivial_hom_assoc, H1ฯ€_eq_iff

groupHomology

Definitions

NameCategoryTheorems
H1 ๐Ÿ“–CompOp
26 mathmath: H1CoresCoinf_Xโ‚ƒ, ฮดโ‚€_apply, ฯ€_comp_H1Iso_inv, H1CoresCoinfOfTrivial_Xโ‚, H1CoresCoinf_Xโ‚, H1CoresCoinfOfTrivial_Xโ‚‚, H1CoresCoinf_Xโ‚‚, H1ฯ€_comp_map_apply, H1AddEquivOfIsTrivial_single, ฯ€_comp_H1Iso_hom_apply, H1AddEquivOfIsTrivial_symm_apply, H1ToTensorOfIsTrivial_H1ฯ€_single, H1ฯ€_eq_zero_iff, ฯ€_comp_H1Iso_hom_assoc, H1ฯ€_comp_map_assoc, instEpiModuleCatH1ฯ€, H1AddEquivOfIsTrivial_apply, H1ฯ€_comp_map, ฯ€_comp_H1Iso_hom, mkH1OfIsTrivial_apply, ฯ€_comp_H1Iso_inv_apply, H1CoresCoinfOfTrivial_Xโ‚ƒ, H1AddEquivOfIsTrivial_symm_tmul, ฯ€_comp_H1Iso_inv_assoc, ฮดโ‚_apply, H1ฯ€_eq_iff

---

โ† Back to Index