Documentation Verification Report

PrecoverageToGrothendieck

πŸ“ Source: Mathlib/CategoryTheory/Sites/PrecoverageToGrothendieck.lean

Statistics

MetricCount
DefinitionsSaturate, toGrothendieck
2
TheoremsisSheafFor_iff_of_iso, generate_mem_toGrothendieck, isSheaf_toGrothendieck_iff, mem_toGrothendieck_iff, mem_toGrothendieck_iff_of_isStableUnderComposition, toGrothendieck_eq_sInf, toGrothendieck_mono, toGrothendieck_toPretopology_eq_toGrothendieck, isSheafFor_of_mem_precoverage, comp_iff_of_preservesPairwisePullbacks, isSheafFor_ofArrows_comp_iff, isSheafFor_singleton_iff_of_iso
12
Total14

CategoryTheory.PreZeroHypercover

Theorems

NameKindAssumesProvesValidatesDepends On
isSheafFor_iff_of_iso πŸ“–mathematicalβ€”CategoryTheory.Presieve.IsSheafFor
presieveβ‚€
β€”CategoryTheory.Presieve.isSheafFor_iff_generate
CategoryTheory.Sieve.ofArrows.eq_1
sieveβ‚€.eq_1
sieveβ‚€_eq_of_iso

CategoryTheory.Precoverage

Definitions

NameCategoryTheorems
Saturate πŸ“–CompData
2 mathmath: CategoryTheory.Coverage.saturate_iff_saturate_toPrecoverage, mem_toGrothendieck_iff
toGrothendieck πŸ“–CompOp
17 mathmath: toGrothendieck_le_iff_le_toPrecoverage, CategoryTheory.Coverage.toGrothendieck_toPrecoverage, isSheaf_toGrothendieck_iff_of_isStableUnderBaseChange_of_small, toGrothendieck_mono, CategoryTheory.Pseudofunctor.IsPrestack.of_precoverage, CategoryTheory.Pseudofunctor.IsStack.of_precoverage, isSheaf_toGrothendieck_iff, ZeroHypercover.toOneHypercover_toPreOneHypercover, mem_toGrothendieck_iff, generate_mem_toGrothendieck, CategoryTheory.Functor.isContinuous_toGrothendieck_of_pullbacksPreservedBy, mem_toGrothendieck_iff_of_isStableUnderComposition, toGrothendieck_toCoverage, toGrothendieck_toPretopology_eq_toGrothendieck, toGrothendieck_eq_sInf, CategoryTheory.over_toGrothendieck_eq_toGrothendieck_comap_forget, isSheaf_toGrothendieck_iff_of_isStableUnderBaseChange

Theorems

NameKindAssumesProvesValidatesDepends On
generate_mem_toGrothendieck πŸ“–mathematicalCategoryTheory.Presieve
Set
Set.instMembership
coverings
CategoryTheory.Sieve
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
toGrothendieck
CategoryTheory.Sieve.generate
β€”β€”
isSheaf_toGrothendieck_iff πŸ“–mathematicalβ€”CategoryTheory.Presieve.IsSheaf
toGrothendieck
CategoryTheory.Presieve.IsSheafFor
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.pullback
CategoryTheory.Sieve.generate
β€”CategoryTheory.Presieve.IsSheaf.isSheafFor
CategoryTheory.Sieve.generate_sieve
CategoryTheory.GrothendieckTopology.pullback_stable
CategoryTheory.Sieve.pullback_top
CategoryTheory.Presieve.isSheafFor_top
CategoryTheory.Sieve.pullback_comp
CategoryTheory.Presieve.IsSeparatedFor.ext
CategoryTheory.Functor.map_comp
CategoryTheory.op_comp
CategoryTheory.Category.assoc
CategoryTheory.Sieve.pullback_id
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.types_comp_apply
mem_toGrothendieck_iff πŸ“–mathematicalβ€”CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
toGrothendieck
Saturate
β€”β€”
mem_toGrothendieck_iff_of_isStableUnderComposition πŸ“–mathematicalβ€”CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
toGrothendieck
CategoryTheory.Presieve
coverings
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticePresieve
CategoryTheory.Sieve.arrows
β€”CategoryTheory.Sieve.le_generate
mem_coverings_of_isIso
CategoryTheory.IsIso.id
hasPullbacks_of_mem
pullbackArrows_mem
CategoryTheory.Sieve.generate_le_iff
CategoryTheory.Sieve.pullbackArrows_comm
CategoryTheory.Sieve.pullback_monotone
mem_iff_exists_zeroHypercover
ZeroHypercover.memβ‚€
CategoryTheory.Presieve.ofArrows_le_iff
CategoryTheory.GrothendieckTopology.superset_covering
generate_mem_toGrothendieck
toGrothendieck_eq_sInf πŸ“–mathematicalβ€”toGrothendieck
InfSet.sInf
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instInfSet
setOf
β€”le_antisymm
le_sInf_iff
CategoryTheory.GrothendieckTopology.top_mem
CategoryTheory.GrothendieckTopology.pullback_stable
CategoryTheory.GrothendieckTopology.transitive
sInf_le
toGrothendieck_mono πŸ“–mathematicalCategoryTheory.Precoverage
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instLEGrothendieckTopology
toGrothendieck
β€”generate_mem_toGrothendieck
toGrothendieck_toPretopology_eq_toGrothendieck πŸ“–mathematicalβ€”CategoryTheory.Pretopology.toGrothendieck
toPretopology
toGrothendieck
β€”CategoryTheory.GrothendieckTopology.ext
Set.ext
mem_toGrothendieck_iff_of_isStableUnderComposition
instHasPullbacksOfHasPullbacks

CategoryTheory.Presieve

Theorems

NameKindAssumesProvesValidatesDepends On
isSheafFor_ofArrows_comp_iff πŸ“–mathematicalβ€”IsSheafFor
ofArrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
β€”CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.PreZeroHypercover.isSheafFor_iff_of_iso
isSheafFor_singleton_iff_of_iso πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
IsSheafFor
singleton
β€”ofArrows_pUnit
isSheafFor_ofArrows_comp_iff

CategoryTheory.Presieve.IsSheaf

Theorems

NameKindAssumesProvesValidatesDepends On
isSheafFor_of_mem_precoverage πŸ“–mathematicalCategoryTheory.Presieve.IsSheaf
CategoryTheory.Precoverage.toGrothendieck
CategoryTheory.Presieve
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.Presieve.IsSheafForβ€”CategoryTheory.Sieve.generate_sieve
CategoryTheory.Sieve.pullback_id
CategoryTheory.Precoverage.isSheaf_toGrothendieck_iff

CategoryTheory.Presieve.IsSheafFor

Theorems

NameKindAssumesProvesValidatesDepends On
comp_iff_of_preservesPairwisePullbacks πŸ“–mathematicalβ€”CategoryTheory.Presieve.IsSheafFor
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.op
CategoryTheory.Functor.obj
CategoryTheory.Presieve.map
β€”CategoryTheory.Presieve.HasPairwisePullbacks.map_of_preservesPairwisePullbacks
CategoryTheory.Presieve.exists_eq_ofArrows
CategoryTheory.Presieve.map_ofArrows
CategoryTheory.Presieve.instHasPullbackOfHasPairwisePullbacksOfArrows
CategoryTheory.Functor.preservesLimit_cospan_of_mem_presieve
CategoryTheory.Limits.hasPullback_of_preservesPullback
CategoryTheory.Limits.pullbackComparison_comp_fst
CategoryTheory.op_comp
CategoryTheory.Functor.map_comp
CategoryTheory.Limits.pullbackComparison_comp_snd
CategoryTheory.isIso_iff_bijective
CategoryTheory.Functor.map_isIso
CategoryTheory.isIso_op
CategoryTheory.Limits.instIsIsoPullbackComparison

---

← Back to Index