Documentation Verification Report

Preserves

📁 Source: Mathlib/CategoryTheory/Sites/Preserves.lean

Statistics

MetricCount
DefinitionsisTerminal_of_isSheafFor_empty_presieve
1
TheoremsfirstMap_eq_secondMap, isSheafFor_iff_preservesProduct, isSheafFor_of_preservesProduct, piComparison_fac, preservesProduct_of_isSheafFor, preservesTerminal_of_isSheaf_for_empty
6
Total7

CategoryTheory.Presieve

Definitions

NameCategoryTheorems
isTerminal_of_isSheafFor_empty_presieve 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
firstMap_eq_secondMap 📖mathematicalIsSheafFor
ofArrows
IsEmpty.elim
Empty.instIsEmpty
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mono
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
Pairwise
CategoryTheory.IsPullback
CategoryTheory.Limits.initial
CategoryTheory.Limits.initial.to
CategoryTheory.Equalizer.Presieve.Arrows.firstMap
CategoryTheory.Equalizer.Presieve.Arrows.secondMap
Empty.instIsEmpty
CategoryTheory.types_ext
CategoryTheory.Equalizer.Presieve.Arrows.SecondObj.ext
CategoryTheory.Limits.Types.pi_lift_π_apply
small_prod
CategoryTheory.Mono.right_cancellation
CategoryTheory.Limits.pullback.condition
preservesTerminal_of_isSheaf_for_empty
CategoryTheory.injective_of_mono
instHasPullbackOfHasPairwisePullbacksOfArrows
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_of_hasLimits
CategoryTheory.Limits.Types.hasLimitsOfSize
UnivLE.self
Finite.of_fintype
CategoryTheory.Limits.hasTerminal_op_of_hasInitial
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.Types.limit_ext
isSheafFor_iff_preservesProduct 📖mathematicalIsSheafFor
ofArrows
IsEmpty.elim
Empty.instIsEmpty
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mono
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
Pairwise
CategoryTheory.IsPullback
CategoryTheory.Limits.initial
CategoryTheory.Limits.initial.to
CategoryTheory.Limits.PreservesLimit
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Empty.instIsEmpty
preservesProduct_of_isSheafFor
isSheafFor_of_preservesProduct
isSheafFor_of_preservesProduct 📖mathematicalIsSheafFor
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
ofArrows
CategoryTheory.Equalizer.Presieve.Arrows.w
CategoryTheory.Equalizer.Presieve.Arrows.sheaf_condition
CategoryTheory.Limits.Types.type_equalizer_iff_unique
CategoryTheory.Limits.instHasProductOppositeOp
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.instSmallDiscrete
CategoryTheory.Limits.instIsIsoPiComparison
Function.bijective_iff_existsUnique
CategoryTheory.isIso_iff_bijective
piComparison_fac
CategoryTheory.injective_of_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.FunctorToTypes.map_inv_map_hom_apply
CategoryTheory.Iso.inv_hom_id
CategoryTheory.FunctorToTypes.map_id_apply
piComparison_fac 📖mathematicalCategoryTheory.Limits.piComparison
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
CategoryTheory.Limits.instHasProductOppositeOp
CategoryTheory.Limits.HasColimit.mk'
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.Limits.ColimitCocone
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.instSmallDiscrete
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.piObj
CategoryTheory.Limits.Pi.π
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Equalizer.Presieve.Arrows.FirstObj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Limits.opCoproductIsoProduct'
CategoryTheory.Limits.productIsProduct
CategoryTheory.Equalizer.Presieve.Arrows.forkMap
CategoryTheory.Limits.instHasProductOppositeOp
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.instSmallDiscrete
CategoryTheory.Limits.map_lift_piComparison
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Category.comp_id
CategoryTheory.Limits.desc_op_comp_opCoproductIsoProduct'_hom
CategoryTheory.Limits.IsColimit.desc_self
CategoryTheory.Category.id_comp
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Functor.map_id
preservesProduct_of_isSheafFor 📖mathematicalIsSheafFor
ofArrows
IsEmpty.elim
Empty.instIsEmpty
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Mono
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
Pairwise
CategoryTheory.IsPullback
CategoryTheory.Limits.initial
CategoryTheory.Limits.initial.to
CategoryTheory.Limits.PreservesLimit
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Empty.instIsEmpty
CategoryTheory.Limits.PreservesProduct.of_iso_comparison
CategoryTheory.Limits.instHasProductOppositeOp
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.instSmallDiscrete
piComparison_fac
CategoryTheory.IsIso.comp_isIso'
CategoryTheory.Functor.map_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.isIso_iff_bijective
Function.bijective_iff_existsUnique
CategoryTheory.Equalizer.Presieve.Arrows.w
CategoryTheory.Limits.Types.type_equalizer_iff_unique
CategoryTheory.Equalizer.Presieve.Arrows.sheaf_condition
firstMap_eq_secondMap
preservesTerminal_of_isSheaf_for_empty 📖mathematicalIsSheafFor
ofArrows
IsEmpty.elim
Empty.instIsEmpty
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.PreservesLimit
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
Empty.instIsEmpty
CategoryTheory.Limits.IsInitial.hasInitial
CategoryTheory.Limits.preservesTerminal_of_iso
CategoryTheory.Limits.hasTerminal_op_of_hasInitial
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_of_hasLimits
CategoryTheory.Limits.Types.hasLimitsOfSize
UnivLE.self
Finite.of_fintype

---

← Back to Index