Documentation Verification Report

PreservesLocallyBijective

📁 Source: Mathlib/CategoryTheory/Sites/PreservesLocallyBijective.lean

Statistics

MetricCount
Definitions0
TheoremsisLocallyInjective_of_whisker, isLocallyInjective_whisker, isLocallyInjective_whisker_iff, isLocallySurjective_of_whisker, isLocallySurjective_whisker, isLocallySurjective_whisker_iff
6
Total6

CategoryTheory.Presheaf

Theorems

NameKindAssumesProvesValidatesDepends On
isLocallyInjective_of_whisker 📖mathematicalCategoryTheory.CoverPreservingIsLocallyInjectiveCategoryTheory.GrothendieckTopology.transitive
CategoryTheory.Functor.is_cover_of_isCoverDense
CategoryTheory.Sieve.pullback_comp
CategoryTheory.GrothendieckTopology.pullback_stable
CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.Sieve.functorPullback_pushforward_le
CategoryTheory.Sieve.functorPushforward_monotone
CategoryTheory.Functor.map_comp
CategoryTheory.comp_apply
CategoryTheory.CoverPreserving.cover_preserve
equalizerSieve_mem
CategoryTheory.NatTrans.naturality_apply
isLocallyInjective_whisker 📖mathematicalIsLocallyInjective
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.cover_lift
equalizerSieve_mem
isLocallyInjective_whisker_iff 📖mathematicalCategoryTheory.CoverPreservingIsLocallyInjective
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Functor.whiskerLeft
isLocallyInjective_of_whisker
isLocallyInjective_whisker
isLocallySurjective_of_whisker 📖mathematicalCategoryTheory.CoverPreservingIsLocallySurjectiveCategoryTheory.GrothendieckTopology.transitive
CategoryTheory.Functor.is_cover_of_isCoverDense
CategoryTheory.Sieve.pullback_comp
CategoryTheory.GrothendieckTopology.pullback_stable
CategoryTheory.CoverPreserving.cover_preserve
imageSieve_mem
CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.Sieve.functorPullback_pushforward_le
CategoryTheory.Sieve.functorPushforward_monotone
CategoryTheory.Functor.map_comp
CategoryTheory.comp_apply
isLocallySurjective_whisker 📖mathematicalIsLocallySurjective
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.cover_lift
imageSieve_mem
isLocallySurjective_whisker_iff 📖mathematicalCategoryTheory.CoverPreservingIsLocallySurjective
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Functor.whiskerLeft
isLocallySurjective_of_whisker
isLocallySurjective_whisker

---

← Back to Index