Documentation Verification Report

PreservesSheafification

📁 Source: Mathlib/CategoryTheory/Sites/PreservesSheafification.lean

Statistics

MetricCount
DefinitionscomposeAndSheafify, instLiftingFunctorOppositeSheafPresheafToSheafWCompObjWhiskeringRightComposeAndSheafify, presheafToSheafCompComposeAndSheafifyIso, sheafComposeNatIso, sheafComposeNatTrans, sheafifyComposeIso, toPresheafToSheafCompComposeAndSheafify
7
Theoremsle, W_isInvertedBy_whiskeringRight_presheafToSheaf, W_of_preservesSheafification, instIsIsoFunctorOppositeSheafSheafComposeNatTransPlusPlusAdjunction, instIsIsoSheafAppFunctorOppositeSheafComposeNatTransPlusPlusAdjunction, instPreservesSheafification, instPreservesSheafificationForgetOfPreservesLimitsOfHasColimitsOfShapeOfPreservesColimitsOfShapeOppositeCoverOfHasLimitsOfShapeWalkingMulticospanOfReflectsIsomorphisms, preservesSheafification_iff_of_adjunctions, preservesSheafification_iff_of_adjunctions_of_hasSheafCompose, sheafToPresheaf_map_sheafComposeNatTrans_eq_sheafifyCompIso_inv, instIsIsoFunctorOppositeSheafSheafComposeNatTrans, instIsIsoFunctorOppositeSheafToPresheafToSheafCompComposeAndSheafify, presheafToSheafCompComposeAndSheafifyIso_inv_app, sheafComposeIso_hom_fac, sheafComposeIso_hom_fac_assoc, sheafComposeIso_inv_fac, sheafComposeIso_inv_fac_assoc, sheafComposeNatTrans_app_uniq, sheafComposeNatTrans_fac, toPresheafToSheafCompComposeAndSheafify_app
20
Total27

CategoryTheory

Definitions

NameCategoryTheorems
instLiftingFunctorOppositeSheafPresheafToSheafWCompObjWhiskeringRightComposeAndSheafify 📖CompOp
presheafToSheafCompComposeAndSheafifyIso 📖CompOp
1 mathmath: presheafToSheafCompComposeAndSheafifyIso_inv_app
sheafComposeNatIso 📖CompOp
sheafComposeNatTrans 📖CompOp
7 mathmath: instIsIsoFunctorOppositeSheafSheafComposeNatTrans, GrothendieckTopology.instIsIsoFunctorOppositeSheafSheafComposeNatTransPlusPlusAdjunction, GrothendieckTopology.sheafToPresheaf_map_sheafComposeNatTrans_eq_sheafifyCompIso_inv, sheafComposeNatTrans_app_uniq, GrothendieckTopology.preservesSheafification_iff_of_adjunctions_of_hasSheafCompose, GrothendieckTopology.instIsIsoSheafAppFunctorOppositeSheafComposeNatTransPlusPlusAdjunction, sheafComposeNatTrans_fac
sheafifyComposeIso 📖CompOp
5 mathmath: constantCommuteCompose_hom_app_val, sheafComposeIso_hom_fac, sheafComposeIso_inv_fac_assoc, sheafComposeIso_hom_fac_assoc, sheafComposeIso_inv_fac
toPresheafToSheafCompComposeAndSheafify 📖CompOp
2 mathmath: toPresheafToSheafCompComposeAndSheafify_app, instIsIsoFunctorOppositeSheafToPresheafToSheafCompComposeAndSheafify

Theorems

NameKindAssumesProvesValidatesDepends On
instIsIsoFunctorOppositeSheafSheafComposeNatTrans 📖mathematicalIsIso
Functor
Opposite
Category.opposite
Functor.category
Sheaf
Sheaf.instCategorySheaf
Functor.comp
Functor.obj
Functor.whiskeringRight
sheafCompose
sheafComposeNatTrans
GrothendieckTopology.preservesSheafification_iff_of_adjunctions_of_hasSheafCompose
instIsIsoFunctorOppositeSheafToPresheafToSheafCompComposeAndSheafify 📖mathematicalIsIso
Functor
Opposite
Category.opposite
Functor.category
Sheaf
Sheaf.instCategorySheaf
Functor.comp
Functor.obj
Functor.whiskeringRight
presheafToSheaf
Sheaf.composeAndSheafify
toPresheafToSheafCompComposeAndSheafify
NatTrans.isIso_iff_isIso_app
GrothendieckTopology.W_iff
GrothendieckTopology.W_of_preservesSheafification
GrothendieckTopology.W_toSheafify
presheafToSheafCompComposeAndSheafifyIso_inv_app 📖mathematicalNatTrans.app
Functor
Opposite
Category.opposite
Functor.category
Sheaf
Sheaf.instCategorySheaf
Functor.comp
Functor.obj
Functor.whiskeringRight
presheafToSheaf
Sheaf.composeAndSheafify
Iso.inv
presheafToSheafCompComposeAndSheafifyIso
Functor.map
Sheaf.val
Functor.whiskerRight
toSheafify
sheafComposeIso_hom_fac 📖mathematicalCategoryStruct.comp
Functor
Opposite
Category.opposite
Category.toCategoryStruct
Functor.category
Functor.comp
sheafify
toSheafify
Iso.hom
sheafifyComposeIso
Functor.whiskerRight
sheafComposeNatTrans_fac
sheafComposeIso_hom_fac_assoc 📖mathematicalCategoryStruct.comp
Functor
Opposite
Category.opposite
Category.toCategoryStruct
Functor.category
Functor.comp
sheafify
toSheafify
Iso.hom
sheafifyComposeIso
Functor.whiskerRight
Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
sheafComposeIso_hom_fac
sheafComposeIso_inv_fac 📖mathematicalCategoryStruct.comp
Functor
Opposite
Category.opposite
Category.toCategoryStruct
Functor.category
Functor.comp
sheafify
Functor.whiskerRight
toSheafify
Iso.inv
sheafifyComposeIso
sheafComposeIso_hom_fac
Category.assoc
Iso.hom_inv_id
Category.comp_id
sheafComposeIso_inv_fac_assoc 📖mathematicalCategoryStruct.comp
Functor
Opposite
Category.opposite
Category.toCategoryStruct
Functor.category
Functor.comp
sheafify
Functor.whiskerRight
toSheafify
Iso.inv
sheafifyComposeIso
Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
sheafComposeIso_inv_fac
sheafComposeNatTrans_app_uniq 📖mathematicalCategoryStruct.comp
Functor
Opposite
Category.opposite
Category.toCategoryStruct
Functor.category
Functor.obj
Functor.id
Functor.comp
Sheaf
Sheaf.instCategorySheaf
sheafToPresheaf
sheafCompose
NatTrans.app
Adjunction.unit
Functor.map
Functor.whiskerRight
Functor.whiskeringRight
sheafComposeNatTrans
Equiv.injective
Equiv.apply_symm_apply
Adjunction.homEquiv_unit
sheafComposeNatTrans_fac 📖mathematicalCategoryStruct.comp
Functor
Opposite
Category.opposite
Category.toCategoryStruct
Functor.category
Functor.obj
Functor.id
Functor.comp
Sheaf
Sheaf.instCategorySheaf
sheafToPresheaf
sheafCompose
NatTrans.app
Adjunction.unit
Functor.map
Functor.whiskeringRight
sheafComposeNatTrans
Functor.whiskerRight
Adjunction.homEquiv_counit
Functor.map_comp
Adjunction.unit_naturality_assoc
Adjunction.right_triangle_components
Category.comp_id
toPresheafToSheafCompComposeAndSheafify_app 📖mathematicalNatTrans.app
Functor
Opposite
Category.opposite
Functor.category
Sheaf
Sheaf.instCategorySheaf
Functor.comp
Functor.obj
Functor.whiskeringRight
presheafToSheaf
Sheaf.composeAndSheafify
toPresheafToSheafCompComposeAndSheafify
Functor.map
Sheaf.val
Functor.whiskerRight
toSheafify

CategoryTheory.GrothendieckTopology

Theorems

NameKindAssumesProvesValidatesDepends On
W_isInvertedBy_whiskeringRight_presheafToSheaf 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedBy
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
W
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
CategoryTheory.presheafToSheaf
W_iff
W_of_preservesSheafification
W_of_preservesSheafification 📖mathematicalWCategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.whiskerRight
PreservesSheafification.le
instIsIsoFunctorOppositeSheafSheafComposeNatTransPlusPlusAdjunction 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.types
CategoryTheory.forget
CategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
CategoryTheory.plusPlusSheaf
CategoryTheory.Limits.PreservesLimitsOfSize.preservesLimitsOfShape
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.sheafCompose
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.sheafComposeNatTrans
CategoryTheory.plusPlusAdjunction
CategoryTheory.NatIso.isIso_of_isIso_app
CategoryTheory.Limits.PreservesLimitsOfSize.preservesLimitsOfShape
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.hasSheafCompose_of_preservesMulticospan
instIsIsoSheafAppFunctorOppositeSheafComposeNatTransPlusPlusAdjunction
instIsIsoSheafAppFunctorOppositeSheafComposeNatTransPlusPlusAdjunction 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.types
CategoryTheory.forget
CategoryTheory.IsIso
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskeringRight
CategoryTheory.plusPlusSheaf
CategoryTheory.Limits.PreservesLimitsOfSize.preservesLimitsOfShape
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.sheafCompose
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.NatTrans.app
CategoryTheory.sheafComposeNatTrans
CategoryTheory.plusPlusAdjunction
CategoryTheory.Limits.PreservesLimitsOfSize.preservesLimitsOfShape
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.isIso_iff_of_reflects_iso
CategoryTheory.instReflectsIsomorphismsSheafFunctorOppositeSheafToPresheaf
sheafToPresheaf_map_sheafComposeNatTrans_eq_sheafifyCompIso_inv
CategoryTheory.Iso.isIso_inv
instPreservesSheafification 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.types
CategoryTheory.forget
PreservesSheafificationCategoryTheory.Limits.PreservesLimitsOfSize.preservesLimitsOfShape
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.hasSheafCompose_of_preservesMulticospan
preservesSheafification_iff_of_adjunctions_of_hasSheafCompose
instIsIsoFunctorOppositeSheafSheafComposeNatTransPlusPlusAdjunction
instPreservesSheafificationForgetOfPreservesLimitsOfHasColimitsOfShapeOfPreservesColimitsOfShapeOppositeCoverOfHasLimitsOfShapeWalkingMulticospanOfReflectsIsomorphisms 📖mathematicalCategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.types
CategoryTheory.forget
CategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
PreservesSheafificationinstPreservesSheafification
CategoryTheory.Limits.Types.hasLimitsOfShape
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.PreservesLimitsOfSize.preservesLimitsOfShape
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.Types.instPreservesLimitsOfSizeForgetTypeHom
CategoryTheory.reflectsIsomorphisms_of_full_and_faithful
CategoryTheory.Types.instFullForgetTypeHom
CategoryTheory.instFaithfulForget
preservesSheafification_iff_of_adjunctions 📖mathematicalPreservesSheafification
CategoryTheory.IsIso
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.sheafToPresheaf
CategoryTheory.Functor.map
CategoryTheory.Functor.whiskerRight
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
W_iff_isIso_map_of_adjunction
W_of_preservesSheafification
CategoryTheory.Adjunction.instIsIsoMapAppUnitOfFaithfulOfFull
CategoryTheory.instFaithfulSheafFunctorOppositeSheafToPresheaf
CategoryTheory.instFullSheafFunctorOppositeSheafToPresheaf
CategoryTheory.MorphismProperty.postcomp_iff
CategoryTheory.MorphismProperty.Respects.toRespectsRight
CategoryTheory.MorphismProperty.instRespectsOfIsStableUnderComposition
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toIsStableUnderComposition
CategoryTheory.ObjectProperty.instHasTwoOutOfThreePropertyIsLocal
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toHasOfPostcompProperty
CategoryTheory.Functor.whiskerRight_comp
CategoryTheory.NatTrans.naturality
CategoryTheory.MorphismProperty.precomp_iff
CategoryTheory.MorphismProperty.Respects.toRespectsLeft
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toHasOfPrecompProperty
CategoryTheory.ObjectProperty.isLocal_of_isIso
CategoryTheory.Functor.isIso_whiskerRight
CategoryTheory.Functor.map_isIso
preservesSheafification_iff_of_adjunctions_of_hasSheafCompose 📖mathematicalPreservesSheafification
CategoryTheory.IsIso
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
CategoryTheory.sheafCompose
CategoryTheory.sheafComposeNatTrans
preservesSheafification_iff_of_adjunctions
CategoryTheory.NatTrans.isIso_iff_isIso_app
W_iff_isIso_map_of_adjunction
W_sheafToPresheaf_map_iff_isIso
CategoryTheory.sheafComposeNatTrans_fac
CategoryTheory.MorphismProperty.precomp_iff
CategoryTheory.MorphismProperty.Respects.toRespectsLeft
CategoryTheory.MorphismProperty.instRespectsOfIsStableUnderComposition
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toIsStableUnderComposition
CategoryTheory.ObjectProperty.instHasTwoOutOfThreePropertyIsLocal
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toHasOfPrecompProperty
W_adj_unit_app
sheafToPresheaf_map_sheafComposeNatTrans_eq_sheafifyCompIso_inv 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.HasColimitsOfShape
Opposite
Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
instPreorderCover
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.Limits.PreservesLimit
Cover.shape
CategoryTheory.Limits.MulticospanIndex.multicospan
Cover.index
CategoryTheory.types
CategoryTheory.forget
CategoryTheory.Functor.map
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.sheafToPresheaf
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskeringRight
CategoryTheory.plusPlusSheaf
CategoryTheory.Limits.PreservesLimitsOfSize.preservesLimitsOfShape
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.sheafCompose
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.NatTrans.app
CategoryTheory.sheafComposeNatTrans
CategoryTheory.plusPlusAdjunction
CategoryTheory.Iso.inv
sheafify
sheafifyCompIso
CategoryTheory.Limits.PreservesLimitsOfSize.preservesLimitsOfShape
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.hasSheafCompose_of_preservesMulticospan
Equiv.injective
CategoryTheory.Sheaf.cond
HasSheafCompose.isSheaf
sheafify_isSheaf
CategoryTheory.Adjunction.mkOfHomEquiv_homEquiv
sheafifyCompIso_inv_eq_sheafifyLift
toSheafify_sheafifyLift
CategoryTheory.Category.comp_id
CategoryTheory.sheafComposeNatTrans_fac

CategoryTheory.GrothendieckTopology.PreservesSheafification

Theorems

NameKindAssumesProvesValidatesDepends On
le 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.GrothendieckTopology.W
CategoryTheory.MorphismProperty.inverseImage
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight

CategoryTheory.Sheaf

Definitions

NameCategoryTheorems
composeAndSheafify 📖CompOp
6 mathmath: CategoryTheory.toPresheafToSheafCompComposeAndSheafify_app, adjunction_counit_app_val, adjunction_unit_app_val, CategoryTheory.presheafToSheafCompComposeAndSheafifyIso_inv_app, instIsLeftAdjointComposeAndSheafify, CategoryTheory.instIsIsoFunctorOppositeSheafToPresheafToSheafCompComposeAndSheafify

---

← Back to Index