Documentation Verification Report

Pullback

📁 Source: Mathlib/CategoryTheory/Sites/Pullback.lean

Statistics

MetricCount
DefinitionssheafAdjunctionContinuous, sheafPullback, sheafAdjunctionContinuous, sheafPullback, sheafPullbackIso
5
TheoremsinstPreservesFiniteLimitsSheafSheafPullbackOfRepresentablyFlat, instIsRightAdjointSheafSheafPushforwardContinuousOfHasWeakSheafify, instPreservesFiniteLimitsSheafSheafPullback, preservesFiniteLimits
4
Total9

CategoryTheory.Functor

Definitions

NameCategoryTheorems
sheafAdjunctionContinuous 📖CompOp
sheafPullback 📖CompOp
2 mathmath: sheafPullbackConstruction.preservesFiniteLimits, SmallCategories.instPreservesFiniteLimitsSheafSheafPullbackOfRepresentablyFlat

CategoryTheory.Functor.SmallCategories

Theorems

NameKindAssumesProvesValidatesDepends On
instPreservesFiniteLimitsSheafSheafPullbackOfRepresentablyFlat 📖mathematicalCategoryTheory.Limits.PreservesFiniteLimits
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.sheafPullback
CategoryTheory.Functor.sheafPullbackConstruction.instIsRightAdjointSheafSheafPushforwardContinuousOfHasWeakSheafify
CategoryTheory.Functor.instHasLeftKanExtension
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.Limits.PreservesLimitsOfSize.preservesLimitsOfShape
CategoryTheory.types
CategoryTheory.forget
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.GrothendieckTopology.Cover
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
CategoryTheory.GrothendieckTopology.Cover.instSemilatticeInf
CategoryTheory.GrothendieckTopology.Cover.instInhabited
CategoryTheory.Functor.sheafPullbackConstruction.preservesFiniteLimits
CategoryTheory.Functor.instHasLeftKanExtension
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.instHasSheafifyOfPreservesLimitsForgetOfHasFiniteLimitsOfSmallOppositeCover
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
CategoryTheory.Limits.PreservesLimitsOfSize.preservesLimitsOfShape
CategoryTheory.Limits.hasFiniteLimits_of_hasLimits
Opposite.small
UnivLE.small
UnivLE.self
CategoryTheory.lan_preservesFiniteLimits_of_flat
CategoryTheory.Limits.reflectsLimits_of_reflectsIsomorphisms

CategoryTheory.Functor.sheafPullbackConstruction

Definitions

NameCategoryTheorems
sheafAdjunctionContinuous 📖CompOp
sheafPullback 📖CompOp
1 mathmath: instPreservesFiniteLimitsSheafSheafPullback
sheafPullbackIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instIsRightAdjointSheafSheafPushforwardContinuousOfHasWeakSheafify 📖mathematicalCategoryTheory.Functor.HasLeftKanExtension
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Functor.IsRightAdjoint
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.sheafPushforwardContinuous
CategoryTheory.Adjunction.isRightAdjoint
instPreservesFiniteLimitsSheafSheafPullback 📖mathematicalCategoryTheory.Functor.HasLeftKanExtension
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Limits.PreservesFiniteLimits
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
sheafPullback
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.Limits.comp_preservesFiniteLimits
CategoryTheory.instPreservesFiniteLimitsFunctorOppositeSheafPresheafToSheaf
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.Functor.instPreservesLimitsOfSizeOfIsRightAdjoint
preservesFiniteLimits 📖mathematicalCategoryTheory.Functor.HasLeftKanExtension
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Limits.PreservesFiniteLimits
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.sheafPullback
instIsRightAdjointSheafSheafPushforwardContinuousOfHasWeakSheafify
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.Limits.preservesFiniteLimits_of_natIso
CategoryTheory.instHasWeakSheafifyOfHasSheafify
instIsRightAdjointSheafSheafPushforwardContinuousOfHasWeakSheafify
instPreservesFiniteLimitsSheafSheafPullback

---

← Back to Index