Documentation Verification Report

Sheaf

📁 Source: Mathlib/CategoryTheory/Sites/Sheaf.lean

Statistics

MetricCount
DefinitionsIsSeparated, IsSheaf', amalgamate, amalgamateOfArrows, isLimitMultifork, conesEquivSieveCompatibleFamily, firstMap, firstObj, forkMap, homEquivAmalgamation, isLimitOfIsSheaf, isSheafForIsSheafFor', secondMap, secondObj, cone, addCommGroup, val, homEquiv, instCategorySheaf, instInhabitedHom, isTerminalOfBotCover, val, fullyFaithfulSheafToPresheaf, instAddHomSheaf, instInhabitedSheafBotGrothendieckTopologyType, instNegHomSheaf, instPreadditiveSheaf, instSubHomSheaf, instZeroHomSheaf, sheafBotEquivalence, sheafHomHasNSMul, sheafHomHasZSMul, sheafOver, sheafSections, sheafSectionsNatIsoEvaluation, sheafToPresheaf, sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf, sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf
38
TheoremsamalgamateOfArrows_map, amalgamateOfArrows_map_assoc, amalgamate_map, amalgamate_map_assoc, existsUnique_amalgamation_ofArrows, hom_ext, hom_ext_ofArrows, isSheafFor, isLimit_iff_isSheafFor, isLimit_iff_isSheafFor_presieve, isSeparated_iff_subsingleton, isSheaf_bot, isSheaf_comp_of_isSheaf, isSheaf_iff_isLimit, isSheaf_iff_isLimit_pretopology, isSheaf_iff_isSheaf', isSheaf_iff_isSheaf_comp, isSheaf_iff_isSheaf_forget, isSheaf_iff_multiequalizer, isSheaf_iff_multifork, isSheaf_of_isSheaf_comp, isSheaf_of_isTerminal, isSheaf_of_iso_iff, subsingleton_iff_isSeparatedFor, w, add_app, epi_of_presheaf_epi, ext, ext_iff, mono_of_presheaf_mono, comp_val, comp_val_assoc, cond, hom_ext, hom_ext_iff, id_val, fullyFaithfulSheafToPresheaf_preimage_val, instFaithfulSheafFunctorOppositeSheafToPresheaf, instFullSheafFunctorOppositeSheafToPresheaf, instReflectsIsomorphismsSheafFunctorOppositeSheafToPresheaf, isSheaf_iff_isSheaf_of_type, sheafBotEquivalence_counitIso, sheafBotEquivalence_functor, sheafBotEquivalence_inverse_map_val, sheafBotEquivalence_inverse_obj_val, sheafBotEquivalence_unitIso, sheafOver_val, sheafSectionsNatIsoEvaluation_hom_app, sheafSectionsNatIsoEvaluation_inv_app, sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_app_app, sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_app_app, sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, sheafToPresheaf_map, sheafToPresheaf_obj
57
Total95

CategoryTheory

Definitions

NameCategoryTheorems
fullyFaithfulSheafToPresheaf 📖CompOp
1 mathmath: fullyFaithfulSheafToPresheaf_preimage_val
instAddHomSheaf 📖CompOp
1 mathmath: Sheaf.Hom.add_app
instInhabitedSheafBotGrothendieckTopologyType 📖CompOp
instNegHomSheaf 📖CompOp
instPreadditiveSheaf 📖CompOp
14 mathmath: GrothendieckTopology.MayerVietorisSquare.shortComplex_X₃, GrothendieckTopology.MayerVietorisSquare.shortComplex_X₁, GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, GrothendieckTopology.MayerVietorisSquare.shortComplex_shortExact, SheafOfModules.instAdditiveSheafAddCommGrpCatToSheaf, GrothendieckTopology.MayerVietorisSquare.mk₀_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, GrothendieckTopology.MayerVietorisSquare.instEpiSheafAddCommGrpCatGShortComplex, GrothendieckTopology.MayerVietorisSquare.shortComplex_g, plusPlusSheaf_preservesZeroMorphisms, presheafToSheaf_additive, GrothendieckTopology.MayerVietorisSquare.shortComplex_f, GrothendieckTopology.MayerVietorisSquare.instMonoSheafAddCommGrpCatFShortComplex, GrothendieckTopology.MayerVietorisSquare.shortComplex_X₂, GrothendieckTopology.MayerVietorisSquare.shortComplex_exact
instSubHomSheaf 📖CompOp
instZeroHomSheaf 📖CompOp
sheafBotEquivalence 📖CompOp
5 mathmath: sheafBotEquivalence_functor, sheafBotEquivalence_inverse_map_val, sheafBotEquivalence_unitIso, sheafBotEquivalence_inverse_obj_val, sheafBotEquivalence_counitIso
sheafHomHasNSMul 📖CompOp
sheafHomHasZSMul 📖CompOp
sheafOver 📖CompOp
5 mathmath: sheafOver_val, Functor.IsCoverDense.isoOver_hom_app, Functor.IsCoverDense.sheafCoyonedaHom_app, Functor.IsCoverDense.homOver_app, Functor.IsCoverDense.isoOver_inv_app
sheafSections 📖CompOp
14 mathmath: CompHausLike.LocallyConstant.adjunction_counit, Sheaf.instIsIsoAppCounitConstantSheafAdjOfFaithfulOfFullConstantSheafOfIsConstant, Sheaf.natTransΓRes_app, CompHausLike.LocallyConstant.adjunction_left_triangle, Sheaf.isConstant_iff_isIso_counit_app', CompHausLike.LocallyConstant.instIsIsoFunctorTypeUnitSheafCoherentTopologyAdjunction, CompHausLike.LocallyConstant.counit_app_val, constantSheafAdj_counit_w, CompHausLike.LocallyConstant.unit_app, constantSheafAdj_counit_app, sheafSectionsNatIsoEvaluation_hom_app, Sheaf.isConstant_iff_isIso_counit_app, sheafSectionsNatIsoEvaluation_inv_app, CompHausLike.LocallyConstant.adjunction_unit
sheafSectionsNatIsoEvaluation 📖CompOp
2 mathmath: sheafSectionsNatIsoEvaluation_hom_app, sheafSectionsNatIsoEvaluation_inv_app
sheafToPresheaf 📖CompOp
77 mathmath: GrothendieckTopology.W_sheafToPresheaf_map_iff_isIso, sheafBotEquivalence_functor, isIso_sheafificationAdjunction_counit, Sheaf.isLocallySurjective_sheafToPresheaf_map_iff, GrothendieckTopology.yonedaOpCompCoyoneda_hom_app_app_down, sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, sheafificationNatIso_inv_app_val, instIsIsoFunctorOppositeValAppSheafCounitSheafificationAdjunction, sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, sheafificationNatIso_hom_app_val, sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_app_app, sheafToPresheaf_μ, sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, HasSheafify.isLeftExact, GrothendieckTopology.preservesSheafification_iff_of_adjunctions, instPreservesFiniteColimitsSheafExtensiveTopologyFunctorOppositeSheafToPresheafOfPreadditiveOfHasFiniteColimits, instPreservesFiniteLimitsFunctorOppositeSheafReflectorSheafToPresheaf, Functor.sheafPushforwardContinuousCompSheafToPresheafIso_inv_app_app, GrothendieckTopology.W_adj_unit_app, sheafToPresheaf_obj, sheafToPresheaf_map, typeEquiv_unitIso_hom_app, fullyFaithfulSheafToPresheaf_preimage_val, Sheaf.isSheaf_of_isLimit, sheafToPresheaf_δ, typeEquiv_unitIso_inv_app, GrothendieckTopology.yonedaOpCompCoyoneda_inv_app_app, GrothendieckTopology.uliftYonedaCompSheafToPresheaf_inv_app_app, GrothendieckTopology.uliftYonedaCompSheafToPresheaf_hom_app_app, instPreservesFiniteLimitsFunctorOppositeSheafLeftAdjointSheafToPresheaf, SheafOfModules.instPreservesFiniteLimitsFunctorOppositeAddCommGrpCatCompSheafToSheafSheafToPresheaf, typeEquiv_counitIso_inv_app_val_app, PresheafOfModules.toSheaf_map_sheafificationHomEquiv_symm, isSheaf_pointwiseColimit, sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_app_app, GrothendieckTopology.sheafToPresheaf_map_sheafComposeNatTrans_eq_sheafifyCompIso_inv, GrothendieckTopology.uliftYonedaIsoYoneda_hom_app_val_app, Functor.sheafPushforwardCocontinuousCompSheafToPresheafIso_inv, instReflectsIsomorphismsSheafFunctorOppositeSheafToPresheaf, instPreservesColimitsOfShapeSheafExtensiveTopologyFunctorOppositeSheafToPresheafOfPreservesFiniteProductsColim, plusPlusAdjunction_counit_app_val, Functor.sheafPushforwardCocontinuousCompSheafToPresheafIso_hom, lightProfiniteToLightCondSetIsoTopCatToLightCondSet_hom_app_val_app_apply, Sheaf.instPreservesFiniteLimitsFunctorOppositeSheafToPresheafOfHasFiniteLimits, sheafificationAdjunction_unit_app, typeEquiv_counitIso_hom_app_val_app, instFaithfulSheafFunctorOppositeSheafToPresheaf, instFaithfulSheafFunctorOppositeCompSheafComposeSheafToPresheaf, GrothendieckTopology.uliftYonedaOpCompCoyoneda_hom_app_app_down, Sheaf.isLocallyInjective_sheafToPresheaf_map_iff, plusPlusAdjunction_unit_app, GrothendieckTopology.uliftYonedaOpCompCoyoneda_app_app, Functor.sheafPushforwardContinuousCompSheafToPresheafIso_hom_app_app, sheafToPresheaf_η, GrothendieckTopology.uliftYonedaIsoYoneda_inv_app_val_app_down, sheafToPresheaf_ε, GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app, sheafificationAdjunction_counit_app_val, yoneda'_comp, PresheafOfModules.instReflectsIsomorphismsSheafOfModulesFunctorOppositeAddCommGrpCatCompSheafToSheafSheafToPresheaf, Sheaf.sheafifyCocone_ι_app_val_assoc, sheafToPresheaf_isRightAdjoint, instFullSheafFunctorOppositeCompSheafComposeSheafToPresheafOfFaithful, GrothendieckTopology.W_eq_isLocal_range_sheafToPresheaf_obj, lightProfiniteToLightCondSetIsoTopCatToLightCondSet_inv_app_val_app_hom_hom, sheafBotEquivalence_counitIso, GrothendieckTopology.W_eq_W_range_sheafToPresheaf_obj, sheafification_reflective, constantSheafAdj_counit_app, sheafSectionsNatIsoEvaluation_hom_app, instFullSheafFunctorOppositeSheafToPresheaf, Sheaf.sheafifyCocone_ι_app_val, sheafSectionsNatIsoEvaluation_inv_app, PresheafOfModules.toPresheaf_map_sheafificationHomEquiv, sheafComposeNatTrans_fac, GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app_val_app
sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf 📖CompOp
4 mathmath: sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, GrothendieckTopology.yonedaOpCompCoyoneda_inv_app_app, sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_app_app
sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf 📖CompOp
3 mathmath: sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_app_app, sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val

Theorems

NameKindAssumesProvesValidatesDepends On
fullyFaithfulSheafToPresheaf_preimage_val 📖mathematicalSheaf.Hom.val
Functor.FullyFaithful.preimage
Sheaf
Sheaf.instCategorySheaf
Functor
Opposite
Category.opposite
Functor.category
sheafToPresheaf
fullyFaithfulSheafToPresheaf
instFaithfulSheafFunctorOppositeSheafToPresheaf 📖mathematicalFunctor.Faithful
Sheaf
Sheaf.instCategorySheaf
Functor
Opposite
Category.opposite
Functor.category
sheafToPresheaf
Functor.FullyFaithful.faithful
instFullSheafFunctorOppositeSheafToPresheaf 📖mathematicalFunctor.Full
Sheaf
Sheaf.instCategorySheaf
Functor
Opposite
Category.opposite
Functor.category
sheafToPresheaf
Functor.FullyFaithful.full
instReflectsIsomorphismsSheafFunctorOppositeSheafToPresheaf 📖mathematicalFunctor.ReflectsIsomorphisms
Sheaf
Sheaf.instCategorySheaf
Functor
Opposite
Category.opposite
Functor.category
sheafToPresheaf
Functor.FullyFaithful.reflectsIsomorphisms
isSheaf_iff_isSheaf_of_type 📖mathematicalPresheaf.IsSheaf
types
Presieve.IsSheaf
Presieve.isSheaf_iso
Presieve.IsSheafFor.valid_glue
Presieve.IsSeparatedFor.ext
Presieve.IsSheafFor.isSeparatedFor
sheafBotEquivalence_counitIso 📖mathematicalEquivalence.counitIso
Sheaf
Bot.bot
GrothendieckTopology
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
GrothendieckTopology.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Functor
Opposite
Category.opposite
Sheaf.instCategorySheaf
Functor.category
sheafBotEquivalence
Iso.refl
Functor.comp
Presheaf.isSheaf_bot
sheafToPresheaf
Presheaf.isSheaf_bot
sheafBotEquivalence_functor 📖mathematicalEquivalence.functor
Sheaf
Bot.bot
GrothendieckTopology
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
GrothendieckTopology.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Functor
Opposite
Category.opposite
Sheaf.instCategorySheaf
Functor.category
sheafBotEquivalence
sheafToPresheaf
sheafBotEquivalence_inverse_map_val 📖mathematicalSheaf.Hom.val
Bot.bot
GrothendieckTopology
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
GrothendieckTopology.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Presheaf.isSheaf_bot
Functor.map
Functor
Opposite
Category.opposite
Functor.category
Sheaf
Sheaf.instCategorySheaf
Equivalence.inverse
sheafBotEquivalence
Presheaf.isSheaf_bot
sheafBotEquivalence_inverse_obj_val 📖mathematicalSheaf.val
Bot.bot
GrothendieckTopology
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
GrothendieckTopology.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Functor.obj
Functor
Opposite
Category.opposite
Functor.category
Sheaf
Sheaf.instCategorySheaf
Equivalence.inverse
sheafBotEquivalence
sheafBotEquivalence_unitIso 📖mathematicalEquivalence.unitIso
Sheaf
Bot.bot
GrothendieckTopology
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
GrothendieckTopology.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Functor
Opposite
Category.opposite
Sheaf.instCategorySheaf
Functor.category
sheafBotEquivalence
Iso.refl
Functor.id
sheafOver_val 📖mathematicalSheaf.val
types
sheafOver
Functor.comp
Opposite
Category.opposite
Functor.obj
Functor
Functor.category
coyoneda
Opposite.op
sheafSectionsNatIsoEvaluation_hom_app 📖mathematicalNatTrans.app
Sheaf
Sheaf.instCategorySheaf
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
sheafSections
Opposite.op
Functor.comp
sheafToPresheaf
evaluation
Iso.hom
sheafSectionsNatIsoEvaluation
CategoryStruct.id
Category.toCategoryStruct
Sheaf.val
sheafSectionsNatIsoEvaluation_inv_app 📖mathematicalNatTrans.app
Sheaf
Sheaf.instCategorySheaf
Functor.comp
Functor
Opposite
Category.opposite
Functor.category
sheafToPresheaf
Functor.obj
evaluation
Opposite.op
sheafSections
Iso.inv
sheafSectionsNatIsoEvaluation
CategoryStruct.id
Category.toCategoryStruct
Sheaf.val
sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_app_app 📖mathematicalIso.app
Sheaf
Sheaf.instCategorySheaf
types
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
Functor.comp
Functor.op
sheafToPresheaf
coyoneda
Functor.whiskeringLeft
Opposite.op
sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf
Equiv.toIso
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Sheaf.val
Opposite.unop
Equiv.symm
Sheaf.homEquiv
sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val 📖mathematicalSheaf.Hom.val
Opposite.unop
Sheaf
NatTrans.app
Sheaf.instCategorySheaf
types
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
Functor.comp
Functor.op
sheafToPresheaf
coyoneda
Functor.whiskeringLeft
Iso.hom
sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf
sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app 📖mathematicalNatTrans.app
Sheaf
Sheaf.instCategorySheaf
types
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
coyoneda
Functor.comp
Functor.op
sheafToPresheaf
Functor.whiskeringLeft
Iso.inv
sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf
Sheaf.Hom.val
Opposite.unop
sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_app_app 📖mathematicalIso.app
Opposite
Sheaf
Category.opposite
Sheaf.instCategorySheaf
types
Functor.obj
Functor
Functor.category
Functor.comp
sheafToPresheaf
yoneda
Functor.whiskeringLeft
Functor.op
sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf
Opposite.op
Equiv.toIso
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Sheaf.val
Opposite.unop
Equiv.symm
Sheaf.homEquiv
sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val 📖mathematicalSheaf.Hom.val
Opposite.unop
Sheaf
NatTrans.app
Opposite
Category.opposite
Sheaf.instCategorySheaf
types
Functor.obj
Functor
Functor.category
Functor.comp
sheafToPresheaf
yoneda
Functor.whiskeringLeft
Functor.op
Iso.hom
sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf
sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app 📖mathematicalNatTrans.app
Opposite
Sheaf
Category.opposite
Sheaf.instCategorySheaf
types
Functor.obj
Functor
Functor.category
yoneda
Functor.comp
sheafToPresheaf
Functor.whiskeringLeft
Functor.op
Iso.inv
sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf
Sheaf.Hom.val
Opposite.unop
sheafToPresheaf_map 📖mathematicalFunctor.map
Sheaf
Sheaf.instCategorySheaf
Functor
Opposite
Category.opposite
Functor.category
sheafToPresheaf
Sheaf.Hom.val
sheafToPresheaf_obj 📖mathematicalFunctor.obj
Sheaf
Sheaf.instCategorySheaf
Functor
Opposite
Category.opposite
Functor.category
sheafToPresheaf
Sheaf.val

CategoryTheory.Presheaf

Definitions

NameCategoryTheorems
IsSeparated 📖MathDef
2 mathmath: IsSheaf.isSeparated, CategoryTheory.Sheaf.isSeparated
IsSheaf' 📖MathDef
1 mathmath: isSheaf_iff_isSheaf'
conesEquivSieveCompatibleFamily 📖CompOp
firstMap 📖CompOp
1 mathmath: w
firstObj 📖CompOp
1 mathmath: w
forkMap 📖CompOp
1 mathmath: w
homEquivAmalgamation 📖CompOp
isLimitOfIsSheaf 📖CompOp
isSheafForIsSheafFor' 📖CompOp
secondMap 📖CompOp
1 mathmath: w
secondObj 📖CompOp
1 mathmath: w

Theorems

NameKindAssumesProvesValidatesDepends On
isLimit_iff_isSheafFor 📖mathematicalCategoryTheory.Limits.IsLimit
Opposite
CategoryTheory.Presieve.category
CategoryTheory.Sieve.arrows
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Presieve.diagram
CategoryTheory.Functor.mapCone
CategoryTheory.Limits.Cocone.op
CategoryTheory.Presieve.cocone
CategoryTheory.Presieve.IsSheafFor
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Equiv.nonempty_congr
Classical.nonempty_pi
unique_subtype_iff_existsUnique
Equiv.left_inv
isLimit_iff_isSheafFor_presieve 📖mathematicalCategoryTheory.Limits.IsLimit
Opposite
CategoryTheory.Presieve.category
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.generate
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Presieve.diagram
CategoryTheory.Functor.mapCone
CategoryTheory.Limits.Cocone.op
CategoryTheory.Presieve.cocone
CategoryTheory.Presieve.IsSheafFor
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
isLimit_iff_isSheafFor
CategoryTheory.Presieve.isSheafFor_iff_generate
isSeparated_iff_subsingleton 📖mathematicalCategoryTheory.Presieve.IsSeparated
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
Quiver.Hom
CategoryTheory.Limits.Cone
CategoryTheory.Presieve.category
CategoryTheory.Sieve.arrows
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Functor.op
CategoryTheory.Presieve.diagram
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.category
CategoryTheory.Functor.mapCone
CategoryTheory.Limits.Cocone.op
CategoryTheory.Presieve.cocone
subsingleton_iff_isSeparatedFor
isSheaf_bot 📖mathematicalIsSheaf
Bot.bot
CategoryTheory.GrothendieckTopology
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.GrothendieckTopology.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
CategoryTheory.Presieve.isSheaf_bot
isSheaf_comp_of_isSheaf 📖mathematicalIsSheafCategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
isSheaf_iff_isLimit
Nonempty.map
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.PreservesLimitsOfSize.preservesLimitsOfShape
isSheaf_iff_isLimit 📖mathematicalIsSheaf
CategoryTheory.Limits.IsLimit
Opposite
CategoryTheory.Presieve.category
CategoryTheory.Sieve.arrows
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Presieve.diagram
CategoryTheory.Functor.mapCone
CategoryTheory.Limits.Cocone.op
CategoryTheory.Presieve.cocone
isLimit_iff_isSheafFor
isSheaf_iff_isLimit_pretopology 📖mathematicalIsSheaf
CategoryTheory.Pretopology.toGrothendieck
CategoryTheory.Limits.IsLimit
Opposite
CategoryTheory.Presieve.category
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.generate
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Presieve.diagram
CategoryTheory.Functor.mapCone
CategoryTheory.Limits.Cocone.op
CategoryTheory.Presieve.cocone
isLimit_iff_isSheafFor_presieve
isSheaf_iff_isSheaf' 📖mathematicalCategoryTheory.Limits.HasProductsIsSheaf
IsSheaf'
w
CategoryTheory.Presieve.instHasPairwisePullbacksOfHasPullbacks
CategoryTheory.Equalizer.Presieve.w
CategoryTheory.Equalizer.Presieve.sheaf_condition
CategoryTheory.Presieve.isSheafFor_iff_generate
CategoryTheory.coyonedaPreservesLimitsOfShape
CategoryTheory.Sieve.generate_sieve
CategoryTheory.coyoneda_preservesLimit
isSheaf_iff_isSheaf_comp 📖mathematicalIsSheaf
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
isSheaf_comp_of_isSheaf
isSheaf_of_isSheaf_comp
CategoryTheory.Limits.reflectsLimits_of_reflectsIsomorphisms
isSheaf_iff_isSheaf_forget 📖mathematicalIsSheaf
CategoryTheory.types
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasLimitsOfSizeShrink
CategoryTheory.Limits.preservesLimitsOfSize_shrink
isSheaf_iff_isSheaf_comp
isSheaf_iff_multiequalizer 📖mathematicalCategoryTheory.Limits.HasMultiequalizer
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.GrothendieckTopology.Cover.index
IsSheaf
CategoryTheory.IsIso
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Limits.multiequalizer
CategoryTheory.GrothendieckTopology.Cover.toMultiequalizer
isSheaf_iff_multifork
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.limit.lift_π
isSheaf_iff_multifork 📖mathematicalIsSheaf
CategoryTheory.Limits.IsLimit
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.GrothendieckTopology.Cover.multifork
CategoryTheory.GrothendieckTopology.Cover.Arrow.hf
CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation.w
CategoryTheory.Limits.IsLimit.fac
CategoryTheory.Limits.IsLimit.uniq
CategoryTheory.Limits.Cone.w
CategoryTheory.Category.assoc
isSheaf_of_isSheaf_comp 📖IsSheaf
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
isSheaf_iff_isLimit
Nonempty.map
CategoryTheory.Limits.reflectsLimit_of_reflectsLimitsOfShape
CategoryTheory.Limits.reflectsLimitsOfShape_of_reflectsLimits
isSheaf_of_isTerminal 📖mathematicalIsSheaf
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.IsTerminal.hom_ext
isSheaf_of_iso_iff 📖mathematicalIsSheafCategoryTheory.Presieve.isSheaf_iso
subsingleton_iff_isSeparatedFor 📖mathematicalQuiver.Hom
CategoryTheory.Limits.Cone
Opposite
CategoryTheory.Presieve.category
CategoryTheory.Sieve.arrows
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Presieve.diagram
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.category
CategoryTheory.Functor.mapCone
CategoryTheory.Limits.Cocone.op
CategoryTheory.Presieve.cocone
CategoryTheory.Presieve.IsSeparatedFor
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
CategoryTheory.Presieve.is_compatible_of_exists_amalgamation
CategoryTheory.Presieve.compatible_iff_sieveCompatible
Equiv.injective
Equiv.left_inv
w 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
firstObj
secondObj
forkMap
firstMap
secondMap
CategoryTheory.Limits.limit.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Limits.limit.lift_π_assoc
CategoryTheory.Functor.map_comp
CategoryTheory.op_comp
CategoryTheory.Limits.pullback.condition

CategoryTheory.Presheaf.IsSheaf

Definitions

NameCategoryTheorems
amalgamate 📖CompOp
2 mathmath: amalgamate_map, amalgamate_map_assoc
amalgamateOfArrows 📖CompOp
2 mathmath: amalgamateOfArrows_map, amalgamateOfArrows_map_assoc
isLimitMultifork 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
amalgamateOfArrows_map 📖mathematicalCategoryTheory.Presheaf.IsSheaf
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.ofArrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
amalgamateOfArrowsexistsUnique_amalgamation_ofArrows
amalgamateOfArrows_map_assoc 📖mathematicalCategoryTheory.Presheaf.IsSheaf
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.ofArrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
amalgamateOfArrowsCategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
amalgamateOfArrows_map
amalgamate_map 📖mathematicalCategoryTheory.Presheaf.IsSheaf
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation.Z
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation.g₁
CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation.g₂
amalgamate
CategoryTheory.GrothendieckTopology.Cover.Arrow.f
CategoryTheory.Presieve.IsSheafFor.valid_glue
CategoryTheory.GrothendieckTopology.Cover.condition
CategoryTheory.GrothendieckTopology.Cover.Arrow.hf
amalgamate_map_assoc 📖mathematicalCategoryTheory.Presheaf.IsSheaf
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation.Z
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation.g₁
CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation.g₂
amalgamate
CategoryTheory.GrothendieckTopology.Cover.Arrow.f
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
amalgamate_map
existsUnique_amalgamation_ofArrows 📖mathematicalCategoryTheory.Presheaf.IsSheaf
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.ofArrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
ExistsUnique
Quiver.Hom
CategoryTheory.Presieve.isSheafFor_arrows_iff
CategoryTheory.Presieve.isSheafFor_iff_generate
hom_ext 📖CategoryTheory.Presheaf.IsSheaf
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.GrothendieckTopology.Cover.Arrow.Y
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.GrothendieckTopology.Cover.Arrow.f
CategoryTheory.Presieve.IsSeparatedFor.ext
CategoryTheory.Presieve.IsSheafFor.isSeparatedFor
CategoryTheory.GrothendieckTopology.Cover.condition
hom_ext_ofArrows 📖CategoryTheory.Presheaf.IsSheaf
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Sieve.ofArrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
hom_ext
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isSheafFor 📖mathematicalCategoryTheory.Presheaf.IsSheaf
CategoryTheory.types
CategoryTheory.Sieve
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Presieve.IsSheafFor
CategoryTheory.Sieve.arrows
CategoryTheory.isSheaf_iff_isSheaf_of_type

CategoryTheory.Presieve.FamilyOfElements.SieveCompatible

Definitions

NameCategoryTheorems
cone 📖CompOp

CategoryTheory.Sheaf

Definitions

NameCategoryTheorems
homEquiv 📖CompOp
2 mathmath: CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_app_app, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_app_app
instCategorySheaf 📖CompOp
442 mathmath: cartesianMonoidalCategoryLift_val, CategoryTheory.GrothendieckTopology.overMapPullbackId_hom_app_val_app, CategoryTheory.GrothendieckTopology.W_sheafToPresheaf_map_iff_isIso, CategoryTheory.sheafBotEquivalence_functor, SheafOfModules.pushforward_assoc, CategoryTheory.Equivalence.sheafCongrPrecoherent_counitIso_hom_app_val_app, CategoryTheory.Functor.IsDenseSubsite.instIsIsoSheafAppCounitSheafAdjunctionCocontinuous, ΓHomEquiv_naturality_left_symm, CategoryTheory.isIso_sheafificationAdjunction_counit, isLocallySurjective_sheafToPresheaf_map_iff, CategoryTheory.Functor.sheafPushforwardContinuousIso_inv, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_X₃, CategoryTheory.Equivalence.sheafCongr.counitIso_hom_app_val_app, CategoryTheory.GrothendieckTopology.preservesColimitsOfShape_yoneda_of_ofArrows_inj_mem, CategoryTheory.GrothendieckTopology.yonedaOpCompCoyoneda_hom_app_app_down, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_map₂, CategoryTheory.Equivalence.sheafCongrPreregular_counitIso_inv_app_val_app, CategoryTheory.Presheaf.coherentExtensiveEquivalence_functor_map_val, LightCondensed.ihomPoints_apply, CategoryTheory.Functor.IsDenseSubsite.instIsEquivalenceSheafSheafPushforwardContinuous, CategoryTheory.Equivalence.sheafCongr_functor, CategoryTheory.Functor.sheafPushforwardContinuousComp'_inv_app_val_app, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, instIsLocallySurjectiveAppArrowILocallySurjectiveLocallyInjectiveFunctorialLocallySurjectiveInjectiveFactorization, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_apply, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_app_apply, SheafOfModules.pushforwardNatIso_inv, CategoryTheory.GrothendieckTopology.W_eq_inverseImage_isomorphisms, toImage_ι_assoc, CategoryTheory.GrothendieckTopology.overMapPullback_comp_id, CategoryTheory.Functor.sheafPullbackConstruction.instPreservesFiniteLimitsSheafSheafPullback, CategoryTheory.typeEquiv_functor_obj_val_obj, CategoryTheory.GrothendieckTopology.overMapPullbackId_inv_app_val_app, CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, CondensedMod.isDiscrete_tfae, CategoryTheory.instFullSheafSheafComposeOfFaithful, CategoryTheory.GrothendieckTopology.yoneda_map_val, CompHausLike.LocallyConstant.adjunction_counit, CategoryTheory.sheafificationNatIso_inv_app_val, CategoryTheory.GrothendieckTopology.instFaithfulSheafTypeUliftYoneda, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_X₁, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, Condensed.discrete_map, CategoryTheory.instIsIsoFunctorOppositeValAppSheafCounitSheafificationAdjunction, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, CategoryTheory.GrothendieckTopology.Point.instPreservesFiniteLimitsSheafSheafFiberOfLocallySmallOfHasFiniteLimitsOfAB5OfSize, CategoryTheory.sheafificationNatIso_hom_app_val, CategoryTheory.constantCommuteCompose_hom_app_val, isLocallySurjective_comp, CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_app_app, CategoryTheory.Equivalence.instPreservesFiniteLimitsFunctorOppositeSheafTransportAndSheafify, SheafOfModules.instIsRightAdjointPushforwardCompSheafRingCatMapSheafPushforwardContinuous, CategoryTheory.Equivalence.sheafCongrPreregular_unitIso_hom_app_val_app, isLocallySurjective_iff_epi, CategoryTheory.Functor.IsDenseSubsite.sheafEquiv_functor, CategoryTheory.sheafCompose_map_val, comp_val, LightCondensed.discrete_map, AlgebraicGeometry.Scheme.LocalRepresentability.instIsLocallySurjectiveHomYonedaGluedToSheafOfIsLocallySurjectiveZariskiTopologyDescFunctorOppositeType, isPullback_square_op_map_yoneda_presheafToSheaf_yoneda_iff, SheafOfModules.toSheaf_obj_val, CategoryTheory.sheafToPresheaf_μ, CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, CategoryTheory.Presheaf.isLocallyInjective_presheafToSheaf_map_iff, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_naturality, CategoryTheory.instEpiSheafTypeToImage, CategoryTheory.plusPlusSheaf_obj_val, CategoryTheory.Functor.sheafAdjunctionCocontinuous_counit_app_val, CategoryTheory.GrothendieckTopology.instFullSheafTypeYoneda, CategoryTheory.Equivalence.sheafCongrPreregular_inverse_obj_val_map, mem_essImage_of_isConstant, CategoryTheory.hasLimitsEssentiallySmallSite, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.isPushout, CategoryTheory.sheafificationIso_inv_val, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_naturality', instHasColimitsOfShape, CategoryTheory.Functor.sheafPullbackConstruction.instIsRightAdjointSheafSheafPushforwardContinuousOfHasWeakSheafify, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_map, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_inv_toNatTrans_app_val_app, CategoryTheory.Equivalence.sheafCongrPrecoherent_functor_obj_val_obj, CategoryTheory.Functor.sheafPushforwardContinuousNatTrans_app_val, CompHausLike.LocallyConstantModule.functor_map_val, CompHausLike.LocallyConstant.functor_map_val, instIsIsoAppCounitConstantSheafAdjOfFaithfulOfFullConstantSheafOfIsConstant, CategoryTheory.Presheaf.coherentExtensiveEquivalence_counitIso, CategoryTheory.Functor.sheafPushforwardContinuous_map_val_app, CategoryTheory.HasSheafify.isLeftExact, CategoryTheory.GrothendieckTopology.Point.Hom.sheafFiber_comp_assoc, topCatToSheafCompHausLike_map_val_app, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_naturality', CategoryTheory.GrothendieckTopology.preservesSheafification_iff_of_adjunctions, CategoryTheory.Functor.IsCoverDense.faithful_sheafPushforwardContinuous, CategoryTheory.instIsIsoFunctorOppositeSheafSheafComposeNatTrans, toImage_ι, CategoryTheory.instPreservesFiniteColimitsSheafExtensiveTopologyFunctorOppositeSheafToPresheafOfPreadditiveOfHasFiniteColimits, CategoryTheory.typeEquiv_inverse_obj, epi_of_isLocallySurjective', CategoryTheory.GrothendieckTopology.W_iff_isIso_map_of_adjunction, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_shortExact, CategoryTheory.Equivalence.sheafCongrPreregular_functor_obj_val_obj, CategoryTheory.GrothendieckTopology.W_isInvertedBy_whiskeringRight_presheafToSheaf, ΓHomEquiv_naturality_left, SheafOfModules.pushforwardComp_inv_app_val_app, isConstant_iff_forget, CategoryTheory.Equivalence.sheafCongrPreregular_functor_map_val_app, CategoryTheory.Presheaf.coherentExtensiveEquivalence_inverse_map_val, CategoryTheory.instHasImagesSheafType, hasFilteredColimitsOfSize, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_obj, CategoryTheory.instPreservesFiniteLimitsFunctorOppositeSheafReflectorSheafToPresheaf, CategoryTheory.GrothendieckTopology.instFullSheafTypeUliftYoneda, SheafOfModules.pushforwardNatTrans_id, CategoryTheory.plusPlusSheaf_map_val, CategoryTheory.Functor.sheafPushforwardContinuousCompSheafToPresheafIso_inv_app_app, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_naturality_left, CategoryTheory.equivYoneda'_inv_val, CategoryTheory.Equivalence.sheafCongrPreregular_inverse_map_val_app, CategoryTheory.Equivalence.sheafCongrPrecoherent_functor_obj_val_map, CategoryTheory.GrothendieckTopology.W_adj_unit_app, instHasFunctorialFactorizationLocallySurjectiveLocallyInjective, CategoryTheory.sheafToPresheaf_obj, CategoryTheory.sheafToPresheaf_map, isLocallySurjective_iff_epi', SheafOfModules.instAdditiveSheafAddCommGrpCatToSheaf, CategoryTheory.typeEquiv_unitIso_hom_app, CompHausLike.LocallyConstant.functor_obj_val, CategoryTheory.Equivalence.sheafCongrPreregular_functor_obj_val_map, LightCondMod.LocallyConstant.instFullModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf, cartesianMonoidalCategorySnd_val, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_naturality_right, instMonoAppArrowPLocallySurjectiveLocallyInjectiveFunctorialLocallySurjectiveInjectiveFactorization, CategoryTheory.Equivalence.sheafCongrPrecoherent_inverse_map_val_app, CategoryTheory.fullyFaithfulSheafToPresheaf_preimage_val, CategoryTheory.SheafOfTypes.finitary_extensive, instIsGrothendieckAbelian, natTransΓRes_app, CategoryTheory.GrothendieckTopology.yonedaEquiv_naturality', CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_uliftYoneda_map, SheafOfModules.Presentation.quasicoherentData_presentation, CompHausLike.LocallyConstantModule.functor_obj_val, SheafOfModules.toSheaf_map_val, CategoryTheory.instIsRightAdjointSheafΓ, CategoryTheory.GrothendieckTopology.instIsIsoFunctorOppositeSheafSheafComposeNatTransPlusPlusAdjunction, CategoryTheory.GrothendieckTopology.overMapPullback_assoc_assoc, isSheaf_of_isLimit, instHasFiniteColimits, CategoryTheory.sheafToPresheaf_δ, Hom.mono_iff_presheaf_mono, CategoryTheory.sheafBotEquivalence_inverse_map_val, CategoryTheory.typeEquiv_unitIso_inv_app, CategoryTheory.GrothendieckTopology.yonedaOpCompCoyoneda_inv_app_app, CategoryTheory.isRegularEpiCategory_sheaf, CategoryTheory.GrothendieckTopology.uliftYonedaCompSheafToPresheaf_inv_app_app, CategoryTheory.GrothendieckTopology.Point.Hom.sheafFiber_comp, PresheafOfModules.sheafification_map, CategoryTheory.toPresheafToSheafCompComposeAndSheafify_app, CategoryTheory.GrothendieckTopology.uliftYonedaCompSheafToPresheaf_hom_app_app, CategoryTheory.instPreservesFiniteLimitsFunctorOppositeSheafLeftAdjointSheafToPresheaf, SheafOfModules.pullback_comp_id, CategoryTheory.Equivalence.sheafCongrPrecoherent_inverse_obj_val_obj, CategoryTheory.GrothendieckTopology.map_yonedaEquiv', CategoryTheory.sheafBotEquivalence_unitIso, SheafOfModules.instPreservesFiniteLimitsFunctorOppositeAddCommGrpCatCompSheafToSheafSheafToPresheaf, CategoryTheory.typeEquiv_counitIso_inv_app_val_app, CategoryTheory.sheafBotEquivalence_inverse_obj_val, PresheafOfModules.toSheaf_map_sheafificationHomEquiv_symm, CategoryTheory.isSheaf_pointwiseColimit, topCatToSheafCompHausLike_obj, CategoryTheory.Equivalence.sheafCongr.inverse_obj_val_obj, adjunction_counit_app_val, CategoryTheory.SheafOfTypes.adhesive, CategoryTheory.GrothendieckTopology.yonedaEquiv_comp, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.instEpiSheafAddCommGrpCatGShortComplex, isSeparating, isGrothendieckAbelian_of_essentiallySmall, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_map, CategoryTheory.Functor.IsDenseSubsite.sheafEquiv_inverse, ΓObjEquivSections_naturality_symm, mono_of_isLocallyInjective, ΓRes_map_assoc, CategoryTheory.Functor.sheafPushforwardContinuous_obj_val_map, ab5ofSize, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_app_apply, ΓObjEquivHom_naturality_symm, CategoryTheory.instPreservesFiniteLimitsFunctorOppositeSheafPresheafToSheaf, CategoryTheory.Equivalence.sheafCongr.unitIso_hom_app_val_app, hasSeparator, CategoryTheory.instFaithfulSheafSheafCompose, SheafOfModules.conjugateEquiv_pullbackComp_inv, CategoryTheory.typeEquiv_functor_obj_val_map, Hom.mono_of_presheaf_mono, instHasExactColimitsOfShapeOfHasFiniteLimitsOfPreservesColimitsOfShapeFunctorOppositeSheafToPresheaf, CategoryTheory.Functor.IsCoverDense.Types.sheafIso_hom_val, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_app_app, CategoryTheory.GrothendieckTopology.sheafToPresheaf_map_sheafComposeNatTrans_eq_sheafifyCompIso_inv, instHasFiniteLimits, CategoryTheory.GrothendieckTopology.uliftYonedaIsoYoneda_hom_app_val_app, CategoryTheory.Functor.sheafPushforwardContinuousComp_inv_app_val_app, CategoryTheory.instFinitaryExtensiveSheafOfHasPullbacksOfHasSheafify, CompHausLike.LocallyConstant.adjunction_left_triangle, isLocallyInjective_forget, PresheafOfModules.instReflectsIsomorphismsSheafOfModulesSheafAddCommGrpCatToSheaf, SheafOfModules.pullback_id_comp, CategoryTheory.Equivalence.sheafCongrPreregular_counitIso_hom_app_val_app, CategoryTheory.instReflectsIsomorphismsSheafSheafCompose, AlgebraicGeometry.Scheme.LocalRepresentability.yoneda_toGlued_yonedaGluedToSheaf_assoc, CategoryTheory.GrothendieckTopology.Point.instPreservesColimitsOfSizeSheafSheafFiberOfHasSheafifyOfWEqualsLocallyBijectiveOfReflectsIsomorphismsOfPreservesFilteredColimitsOfSizeForgetOfLocallySmall, CategoryTheory.Equivalence.sheafCongrPrecoherent_counitIso_inv_app_val_app, CategoryTheory.Functor.sheafPushforwardCocontinuousCompSheafToPresheafIso_inv, coneΓ_pt, CategoryTheory.Equivalence.sheafCongr.functor_map_val_app, CategoryTheory.Functor.sheafPushforwardContinuousComp_hom_app_val_app, CategoryTheory.instReflectsIsomorphismsSheafFunctorOppositeSheafToPresheaf, CategoryTheory.instPreservesColimitsOfShapeSheafExtensiveTopologyFunctorOppositeSheafToPresheafOfPreservesFiniteProductsColim, CategoryTheory.Functor.sheafPushforwardContinuous_obj_val_obj, isConstant_iff_isIso_counit_app', CategoryTheory.SheafOfTypes.balanced, CategoryTheory.preservesFiniteLimits_presheafToSheaf, CategoryTheory.typeEquiv_inverse_map, SheafOfModules.pushforward_map_val, CategoryTheory.plusPlusAdjunction_counit_app_val, CategoryTheory.GrothendieckTopology.overMapPullbackCongr_eq_eqToIso, CategoryTheory.Functor.sheafPushforwardCocontinuousCompSheafToPresheafIso_hom, SheafOfModules.pushforwardComp_hom_app_val_app, CondensedMod.LocallyConstant.instFaithfulSheafCompHausCoherentTopologyTypeConstantSheaf, CategoryTheory.GrothendieckTopology.preservesSheafification_iff_of_adjunctions_of_hasSheafCompose, adjunction_unit_app_val, SheafOfModules.instIsLeftAdjointOverOverRingCatPushforwardIdSheafOver, CategoryTheory.Functor.sheafPushforwardContinuousId_hom_app_val_app, CategoryTheory.Functor.sheafPushforwardContinuousId'_inv_app_val_app, lightProfiniteToLightCondSetIsoTopCatToLightCondSet_hom_app_val_app_apply, CategoryTheory.Equivalence.sheafCongr_counitIso, AlgebraicGeometry.Scheme.LocalRepresentability.instIsIsoSheafZariskiTopologyTypeYonedaGluedToSheaf, CategoryTheory.Functor.toSheafify_pullbackSheafificationCompatibility, ΓHomEquiv_naturality_right_symm, CategoryTheory.Equivalence.sheafCongr.functor_obj_val_map, CategoryTheory.GrothendieckTopology.preservesLimitsOfSize_yoneda, CategoryTheory.Equivalence.sheafCongrPrecoherent_unitIso_inv_app_val_app, ΓObjEquivHom_naturality, ΓRes_map, SheafOfModules.pushforwardCongr_symm, CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv', AlgebraicGeometry.Scheme.LocalRepresentability.yoneda_toGlued_yonedaGluedToSheaf, cartesianMonoidalCategoryWhiskerRight_val, SheafOfModules.instFaithfulSheafAddCommGrpCatToSheaf, CondensedSet.isDiscrete_tfae, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map_val_app, instHasLimitsOfShape, CategoryTheory.Functor.IsCoverDense.iso_of_restrict_iso, CategoryTheory.GrothendieckTopology.overMapPullback_comp_id_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_g, CategoryTheory.plusPlusSheaf_preservesZeroMorphisms, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.isPushoutAddCommGrpFreeSheaf, instIsLocallyInjectiveAppArrowPLocallySurjectiveLocallyInjectiveFunctorialLocallySurjectiveInjectiveFactorization, CategoryTheory.GrothendieckTopology.yoneda_obj_val, CategoryTheory.Functor.IsCoverDense.Types.sheafIso_inv_val, isConstant_iff_mem_essImage, instPreservesFiniteLimitsFunctorOppositeSheafToPresheafOfHasFiniteLimits, CategoryTheory.GrothendieckTopology.yonedaEquiv_naturality, CategoryTheory.sheafificationAdjunction_unit_app, CategoryTheory.typeEquiv_counitIso_hom_app_val_app, CategoryTheory.Presheaf.coherentExtensiveEquivalence_unitIso, CategoryTheory.instFaithfulSheafFunctorOppositeSheafToPresheaf, AlgebraicGeometry.Scheme.LocalRepresentability.instIsLocallyInjectiveHomYonedaGluedToSheaf, CategoryTheory.instFaithfulSheafFunctorOppositeCompSheafComposeSheafToPresheaf, CategoryTheory.GrothendieckTopology.Point.Hom.sheafFiber_id, instHasExactLimitsOfShapeOfHasFiniteColimitsOfPreservesFiniteColimitsFunctorOppositeSheafToPresheaf, CategoryTheory.GrothendieckTopology.map_yonedaULiftEquiv', SheafOfModules.unitToPushforwardObjUnit_val_app_apply, SheafOfModules.pullback_assoc, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_apply, CategoryTheory.Functor.IsCoverDense.sheafIso_inv_val, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_hom_app_app_down, CategoryTheory.presheafToSheaf_additive, LightCondensed.ihomPoints_symm_apply, CategoryTheory.sheafificationIso_hom_val, LightCondensed.discrete_obj, Hom.epi_of_presheaf_epi, isLocallyInjective_sheafToPresheaf_map_iff, id_val, CategoryTheory.Functor.sheafPullbackConstruction.preservesFiniteLimits, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_left, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_map, CategoryTheory.GrothendieckTopology.overMapPullbackComp_inv_app_val_app, isConstant_iff_of_equivalence, hasExactColimitsOfShape, CategoryTheory.presheafToSheafCompComposeAndSheafifyIso_inv_app, instHasFiniteCoproducts, CategoryTheory.Presheaf.coherentExtensiveEquivalence_functor_obj_val, CategoryTheory.yoneda'_obj_val, LightCondMod.LocallyConstant.instFaithfulModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf, CategoryTheory.GrothendieckTopology.instFaithfulSheafTypeYoneda, instIsLocallySurjectiveHomMapTypeSheafComposeForget, CategoryTheory.plusPlusAdjunction_unit_app, CategoryTheory.Equivalence.sheafCongrPrecoherent_inverse_obj_val_map, CategoryTheory.Equivalence.sheafCongrPrecoherent_unitIso_hom_app_val_app, mono_of_injective, CategoryTheory.GrothendieckTopology.instIsLocalizationFunctorOppositeSheafPresheafToSheafW, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_app_app, CategoryTheory.Functor.sheafPushforwardContinuousCompSheafToPresheafIso_hom_app_app, epi_of_isLocallySurjective, CategoryTheory.sheafToPresheaf_η, CompHausLike.LocallyConstant.instIsIsoFunctorTypeUnitSheafCoherentTopologyAdjunction, CategoryTheory.Equivalence.sheafCongrPreregular_inverse_obj_val_obj, CompHausLike.LocallyConstant.counit_app_val, instHasColimitsOfSize, SheafOfModules.pushforwardNatTrans_app_val_app, CategoryTheory.GrothendieckTopology.W_iff, CategoryTheory.GrothendieckTopology.W_eq_inverseImage_isomorphisms_of_adjunction, CategoryTheory.typeEquiv_functor_map_val_app, CategoryTheory.Functor.sheafPushforwardContinuousIso_hom, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_naturality, CategoryTheory.Equivalence.sheafCongr.inverse_obj_val_map, cartesianMonoidalCategoryFst_val, ΓHomEquiv_naturality_right, instIsLeftAdjointComposeAndSheafify, isSeparator, CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv, CategoryTheory.GrothendieckTopology.uliftYonedaIsoYoneda_inv_app_val_app_down, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, isLocallyBijective_iff_isIso, CategoryTheory.instIsConstantObjSheafSheafCompose, CategoryTheory.instIsIsoFunctorOppositeSheafToPresheafToSheafCompComposeAndSheafify, CategoryTheory.sheafToPresheaf_ε, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app, CategoryTheory.sheafificationAdjunction_counit_app_val, CategoryTheory.preservesLimitsOfShape_presheafToSheaf, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_comp, AlgebraicGeometry.Scheme.LocalRepresentability.yonedaGluedToSheaf_app_comp, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.instMonoSheafAddCommGrpCatFShortComplex, CategoryTheory.GrothendieckTopology.overMapPullbackComp_hom_app_val_app, CategoryTheory.hasColimitsEssentiallySmallSite, CondensedMod.LocallyConstant.instFullSheafCompHausCoherentTopologyTypeConstantSheaf, SheafOfModules.pushforward_comp_id, CategoryTheory.Equivalence.sheafCongr_inverse, CategoryTheory.GrothendieckTopology.overMapPullback_id_comp_assoc, LightCondMod.LocallyConstant.instFullSheafLightProfiniteCoherentTopologyTypeConstantSheaf, CategoryTheory.constantSheafAdj_counit_w, CategoryTheory.sheafCompose_id, CompHausLike.LocallyConstant.unit_app, comp_val_assoc, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_hom_toNatTrans_app_val_app, CategoryTheory.yoneda'_comp, SheafOfModules.forgetToSheafModuleCat_map_val, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_app_apply, PresheafOfModules.instReflectsIsomorphismsSheafOfModulesFunctorOppositeAddCommGrpCatCompSheafToSheafSheafToPresheaf, sheafifyCocone_ι_app_val_assoc, SheafOfModules.conjugateEquiv_pullbackId_hom, Hom.add_app, hasLimitsOfSize, CategoryTheory.Equivalence.sheafCongr.inverse_map_val_app, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_map, CategoryTheory.equivYoneda'_hom_val, CategoryTheory.GrothendieckTopology.overMapPullbackCongr_hom_app_val_app, CategoryTheory.sheafToPresheaf_isRightAdjoint, CategoryTheory.instFullSheafFunctorOppositeCompSheafComposeSheafToPresheafOfFaithful, CategoryTheory.Functor.sheafPushforwardContinuousId_inv_app_val_app, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_right, SheafOfModules.instPreservesFiniteLimitsSheafAddCommGrpCatToSheaf, CategoryTheory.GrothendieckTopology.W_eq_isLocal_range_sheafToPresheaf_obj, CategoryTheory.GrothendieckTopology.instIsIsoSheafAppFunctorOppositeSheafComposeNatTransPlusPlusAdjunction, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_naturality_left, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_X₂, instIsRightAdjointSheafComposeOfHasWeakSheafify, SheafOfModules.pushforwardNatTrans_app_val_app_apply, LightCondMod.LocallyConstant.instFaithfulSheafLightProfiniteCoherentTopologyTypeConstantSheaf, PresheafOfModules.instReflectsFiniteLimitsSheafOfModulesSheafAddCommGrpCatToSheaf, CategoryTheory.instIsRegularEpiCategorySheafTypeOfHasSheafify, SheafOfModules.pushforward_id_comp, lightProfiniteToLightCondSetIsoTopCatToLightCondSet_inv_app_val_app_hom_hom, CategoryTheory.sheafBotEquivalence_counitIso, CategoryTheory.GrothendieckTopology.W_eq_W_range_sheafToPresheaf_obj, CategoryTheory.Equivalence.sheafCongrPrecoherent_functor_map_val_app, CategoryTheory.sheafification_reflective, CategoryTheory.Functor.SmallCategories.instPreservesFiniteLimitsSheafSheafPullbackOfRepresentablyFlat, CategoryTheory.sheafHomSectionsEquiv_symm_apply_coe_apply, CategoryTheory.GrothendieckTopology.Point.sheafFiberCompIso_hom_app, CategoryTheory.Equivalence.sheafCongr.functor_obj_val_obj, CategoryTheory.Equivalence.sheafCongrPreregular_unitIso_inv_app_val_app, CategoryTheory.Equivalence.sheafCongr.unitIso_inv_app_val_app, CategoryTheory.GrothendieckTopology.map_yonedaEquiv, isLocallySurjective_iff_isIso, CategoryTheory.GrothendieckTopology.overMapPullback_assoc, ΓObjEquivSections_naturality, CategoryTheory.Presheaf.coherentExtensiveEquivalence_inverse_obj_val, CategoryTheory.constantSheafAdj_counit_app, CategoryTheory.sheafSectionsNatIsoEvaluation_hom_app, SheafOfModules.instIsRightAdjointPushforwardIdSheafRingCat, CategoryTheory.GrothendieckTopology.overMapPullback_id_comp, CategoryTheory.Functor.sheafAdjunctionCocontinuous_homEquiv_apply_val, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_yonedaULift_map, CategoryTheory.GrothendieckTopology.uliftYoneda_obj_val_obj, CategoryTheory.Functor.sheafPushforwardContinuousId'_hom_app_val_app, CategoryTheory.Functor.IsCoverDense.sheafIso_hom_val, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, CategoryTheory.instAdhesiveSheafOfHasPullbacksOfHasPushoutsOfHasSheafify, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_inv_toNatTrans_app_val_app, CategoryTheory.instFullSheafFunctorOppositeSheafToPresheaf, isConstant_iff_isIso_counit_app, SheafOfModules.forgetToSheafModuleCat_obj_val, CategoryTheory.yoneda'_map_val, CategoryTheory.instIsLeftAdjointFunctorOppositeSheafPresheafToSheaf, CategoryTheory.GrothendieckTopology.uliftYoneda_obj_val_map_down, cartesianMonoidalCategoryWhiskerLeft_val, ΓRes_naturality, SheafOfModules.pushforwardNatIso_hom, CategoryTheory.Equivalence.sheafCongr_unitIso, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_hom_toNatTrans_app_val_app, sheafifyCocone_ι_app_val, CategoryTheory.Functor.pushforwardContinuousSheafificationCompatibility_hom_app_val, CategoryTheory.Functor.IsDenseSubsite.full_sheafPushforwardContinuous, CategoryTheory.Functor.sheafPushforwardContinuousComp'_hom_app_val_app, CategoryTheory.GrothendieckTopology.map_yonedaULiftEquiv, CategoryTheory.GrothendieckTopology.overMapPullbackCongr_inv_app_val_app, CategoryTheory.Equivalence.sheafCongr.counitIso_inv_app_val_app, CategoryTheory.sheafSectionsNatIsoEvaluation_inv_app, IsConstant.mem_essImage, CategoryTheory.Functor.sheafAdjunctionCocontinuous_unit_app_val, SheafOfModules.pushforward_obj_val, AlgebraicGeometry.Scheme.LocalRepresentability.yonedaGluedToSheaf_app_toGlued, CategoryTheory.GrothendieckTopology.Point.sheafFiberCompIso_inv_app, CategoryTheory.GrothendieckTopology.uliftYoneda_map_val_app_down, CategoryTheory.sheafCompose_obj_val, instHasFiniteProducts, CategoryTheory.GrothendieckTopology.yonedaEquiv_yoneda_map, PresheafOfModules.toPresheaf_map_sheafificationHomEquiv, Condensed.discrete_obj, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_comp, CategoryTheory.sheafComposeNatTrans_fac, CategoryTheory.GrothendieckTopology.yonedaEquiv_apply, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app_val_app, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_naturality_right, CompHausLike.LocallyConstant.adjunction_unit, CategoryTheory.Functor.IsDenseSubsite.faithful_sheafPushforwardContinuous, CategoryTheory.Presheaf.isLocallySurjective_presheafToSheaf_map_iff, SheafOfModules.pushforwardNatTrans_comp, instEpiAppArrowILocallySurjectiveLocallyInjectiveFunctorialLocallySurjectiveInjectiveFactorization, PresheafOfModules.instPreservesFiniteLimitsSheafAddCommGrpCatCompSheafOfModulesSheafificationToSheaf, CategoryTheory.instMonoSheafTypeImageι, CategoryTheory.Functor.IsCoverDense.full_sheafPushforwardContinuous, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_exact, CategoryTheory.sheafCompose_comp
instInhabitedHom 📖CompOp
isTerminalOfBotCover 📖CompOp
val 📖CompOp
477 mathmath: CategoryTheory.Functor.IsDenseSubsite.mapPreimage_map_of_fac, cartesianMonoidalCategoryLift_val, CategoryTheory.GrothendieckTopology.overMapPullbackId_hom_app_val_app, CategoryTheory.Equivalence.sheafCongrPrecoherent_counitIso_hom_app_val_app, ΓHomEquiv_naturality_left_symm, CategoryTheory.Equivalence.sheafCongr.counitIso_hom_app_val_app, TopCat.Sheaf.interUnionPullbackCone_snd, AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToSection_apply, AlgebraicGeometry.Scheme.Modules.instFaithfulPresheafOfModulesToPresheafOfModules, AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_counit_app, CategoryTheory.GrothendieckTopology.yonedaOpCompCoyoneda_hom_app_app_down, AlgebraicGeometry.StructureSheaf.globalSectionsIso_inv, CategoryTheory.Equivalence.sheafCongrPreregular_counitIso_inv_app_val_app, CategoryTheory.sheafOver_val, CategoryTheory.Functor.IsDenseSubsite.mapPreimage_id, CategoryTheory.Presheaf.coherentExtensiveEquivalence_functor_map_val, LightCondensed.ihomPoints_apply, CategoryTheory.eval_app, AlgebraicGeometry.StructureSheaf.comap_id, PresheafOfModules.instIsLocallySurjectiveToSheafify, CategoryTheory.Functor.sheafPushforwardContinuousComp'_inv_app_val_app, condensedSetToTopCat_obj_carrier, AlgebraicGeometry.StructureSheaf.const_mul_rev, Condensed.hom_ext_iff, CategoryTheory.ran_isSheaf_of_isCocontinuous, LightCondensed.forget_obj_val_map, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_apply, AlgebraicGeometry.StructureSheaf.comap_comp, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_app_apply, PresheafOfModules.Sheafify.add_smul, SheafOfModules.instFullPresheafOfModulesValRingCatForget, AlgebraicGeometry.Spec.locallyRingedSpaceObj_presheaf_map, AlgebraicGeometry.StructureSheaf.const_self, LightCondensed.ihomPoints_symm_comp, CategoryTheory.typeEquiv_functor_obj_val_obj, CategoryTheory.GrothendieckTopology.overMapPullbackId_inv_app_val_app, AlgebraicGeometry.Proj.pow_apply, CategoryTheory.instPreservesFiniteProductsOppositeVal, AlgebraicGeometry.Spec_presheaf, LightCondSet.continuous_coinducingCoprod, LightCondSet.epi_iff_locallySurjective_on_lightProfinite, AlgebraicGeometry.StructureSheaf.toOpen_comp_comap_apply, AlgebraicGeometry.Proj.mul_apply, AlgebraicGeometry.StructureSheaf.comap_id', CondensedSet.hom_naturality_apply, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_left_symm_assoc, CategoryTheory.sheafificationNatIso_inv_app_val, AlgebraicGeometry.StructureSheaf.const_add, PresheafOfModules.toSheafify_app_apply', CategoryTheory.instIsIsoFunctorOppositeValAppSheafCounitSheafificationAdjunction, CategoryTheory.sheafificationNatIso_hom_app_val, AlgebraicGeometry.structureSheafInType.mul_apply, AlgebraicGeometry.StructureSheaf.exists_const, TopCat.Sheaf.pushforward_map, CategoryTheory.Functor.IsCoverDense.isoOver_hom_app, AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.structurePresheafInCommRing_obj_carrier, smoothSheaf.ι_evalHom_apply, CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_app_app, AlgebraicGeometry.StructureSheaf.toOpen_comp_comap, CategoryTheory.Equivalence.sheafCongrPreregular_unitIso_hom_app_val_app, TopCat.toSheafCompHausLike_val_obj, AlgebraicGeometry.Spec.locallyRingedSpaceObj_presheaf', TopCat.Sheaf.interUnionPullbackCone_fst, CategoryTheory.GrothendieckTopology.OneHypercover.multiforkLift_map, AlgebraicGeometry.Scheme.Modules.toOpen_fromTildeΓ_app, CategoryTheory.sheafCompose_map_val, comp_val, SheafOfModules.evaluationPreservesLimitsOfShape, isPullback_square_op_map_yoneda_presheafToSheaf_yoneda_iff, SheafOfModules.toSheaf_obj_val, AlgebraicGeometry.StructureSheaf.instIsLocalizedModuleObjOppositeOpensCarrierTopValStructureSheafInTypeOpBasicOpenPowersToOpenₗ, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafMap_π_assoc, AlgebraicGeometry.Proj.one_apply, Condensed.epi_iff_surjective_on_stonean, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_naturality, AlgebraicGeometry.StructureSheaf.to_basicOpen_epi, CategoryTheory.plusPlusSheaf_obj_val, CategoryTheory.Functor.sheafAdjunctionCocontinuous_counit_app_val, CategoryTheory.Equivalence.sheafCongrPreregular_inverse_obj_val_map, CategoryTheory.Functor.IsDenseSubsite.mapPreimage_map, CategoryTheory.Functor.IsCoverDense.Types.appHom_valid_glue, PresheafOfModules.toPresheaf_map_toSheafify, LightCondSet.topCatAdjunctionUnit_val_app_apply, TopCat.Sheaf.id_app, AlgebraicGeometry.StructureSheaf.comap_const, CategoryTheory.sheafificationIso_inv_val, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_naturality', CategoryTheory.GrothendieckTopology.MayerVietorisSquare.sheafCondition_of_sheaf, AlgebraicGeometry.Proj.sub_apply, CategoryTheory.Functor.IsDenseSubsite.mapPreimage_comp_assoc, CategoryTheory.Functor.IsCoverDense.Types.pushforwardFamily_def, AlgebraicGeometry.instIsScalarTowerObjOppositeOpensCarrierTopValStructureSheafInType, Condensed.isSheafStonean, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_map, smoothSheaf.ι_evalHom_assoc, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp_val_app, CategoryTheory.Functor.IsCoverDense.sheafHom_eq, AlgebraicGeometry.StructureSheaf.comap_apply, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_inv_toNatTrans_app_val_app, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_mapPreimage_condition, CategoryTheory.Equivalence.sheafCongrPrecoherent_functor_obj_val_obj, CategoryTheory.Functor.sheafPushforwardContinuousNatTrans_app_val, SheafOfModules.evaluationPreservesLimitsOfSize, Condensed.instPreservesFiniteProductsOppositeCompHausVal, CategoryTheory.Presheaf.coherentExtensiveEquivalence_counitIso, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right_symm, CategoryTheory.Functor.sheafPushforwardContinuous_map_val_app, topCatToSheafCompHausLike_map_val_app, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_naturality', AlgebraicGeometry.StructureSheaf.toPushforwardStalkAlgHom_apply, AlgebraicGeometry.Scheme.ΓSpecIso_inv, tensorProd_isSheaf, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafMap_restriction_assoc, SheafOfModules.isSheaf, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_left, AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_counit_app', imageι_val, CategoryTheory.Functor.IsCoverDense.sheafHom_restrict_eq, CategoryTheory.typeEquiv_inverse_obj, CategoryTheory.Equivalence.sheafCongrPreregular_functor_obj_val_obj, ΓHomEquiv_naturality_left, SheafOfModules.pushforwardComp_inv_app_val_app, CategoryTheory.Equivalence.sheafCongrPreregular_functor_map_val_app, CategoryTheory.Presheaf.coherentExtensiveEquivalence_inverse_map_val, TopCat.Sheaf.extend_hom_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_obj, CategoryTheory.presheaf_mono_of_mono, SheafOfModules.restrictScalars_obj_val, CategoryTheory.Functor.sheafPushforwardContinuousCompSheafToPresheafIso_inv_app_app, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_naturality_left, CategoryTheory.equivYoneda'_inv_val, SheafOfModules.instReflectsIsomorphismsPresheafOfModulesValRingCatForget, CategoryTheory.Equivalence.sheafCongrPreregular_inverse_map_val_app, CategoryTheory.Equivalence.sheafCongrPrecoherent_functor_obj_val_map, AlgebraicGeometry.StructureSheaf.isLocalizedModule_toPushforwardStalkAlgHom_aux, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition_assoc, AlgebraicGeometry.StructureSheaf.algebraMap_self_map, CategoryTheory.sheafToPresheaf_obj, CondensedMod.epi_iff_surjective_on_stonean, CompHausLike.LocallyConstant.functor_obj_val, CategoryTheory.Equivalence.sheafCongrPreregular_functor_obj_val_map, AlgebraicGeometry.Spec.map_appLE, cartesianMonoidalCategorySnd_val, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_naturality_right, CondensedSet.epi_iff_surjective_on_stonean, CategoryTheory.Equivalence.sheafCongrPrecoherent_inverse_map_val_app, toImage_val, AlgebraicGeometry.StructureSheaf.IsLocalization.to_basicOpen, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_left_assoc, TopCat.Sheaf.objSupIsoProdEqLocus_hom_fst, SheafOfModules.instFaithfulPresheafOfModulesValRingCatForget, CategoryTheory.GrothendieckTopology.yonedaEquiv_naturality', CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_uliftYoneda_map, AlgebraicGeometry.StructureSheaf.toOpen_comp_comap_assoc, CategoryTheory.Functor.IsCoverDense.presheafIso_hom_app, Condensed.instPreservesFiniteProductsOppositeProfiniteVal, AlgebraicGeometry.StructureSheaf.const_mul_cancel, CategoryTheory.Functor.IsDenseSubsite.mapPreimage_comp_map, CompHausLike.LocallyConstantModule.functor_obj_val, SheafOfModules.pushforwardCongr_hom_app_val_app, SheafOfModules.toSheaf_map_val, AlgebraicGeometry.ΓSpec.toOpen_comp_locallyRingedSpaceAdjunction_homEquiv_app, Hom.mono_iff_presheaf_mono, CategoryTheory.GrothendieckTopology.yonedaOpCompCoyoneda_inv_app_app, CondensedSet.topCatAdjunctionUnit_val_app_apply, CategoryTheory.toPresheafToSheafCompComposeAndSheafify_app, TopCat.Presheaf.stalk_mono_of_mono, TopCat.Sheaf.interUnionPullbackConeLift_right, CategoryTheory.Equivalence.sheafCongrPrecoherent_inverse_obj_val_obj, CategoryTheory.GrothendieckTopology.map_yonedaEquiv', AlgebraicGeometry.StructureSheaf.const_one, AlgebraicGeometry.StructureSheaf.globalSectionsIso_hom, CategoryTheory.typeEquiv_counitIso_inv_app_val_app, LightCondensed.forget_map_val_app, Condensed.comp_val, AlgebraicGeometry.Scheme.Modules.toOpen_fromTildeΓ_app_assoc, CategoryTheory.sheafBotEquivalence_inverse_obj_val, CondensedMod.hom_naturality_apply, PresheafOfModules.toSheaf_map_sheafificationHomEquiv_symm, AlgebraicGeometry.StructureSheaf.smul_const, AlgebraicGeometry.ΓSpec.unop_locallyRingedSpaceAdjunction_counit_app', Condensed.epi_iff_locallySurjective_on_compHaus, CategoryTheory.Functor.op_comp_isSheaf_of_types, CategoryTheory.Equivalence.sheafCongr.inverse_obj_val_obj, adjunction_counit_app_val, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id_val_app, SheafOfModules.id_val, LightCondensed.isLocallySurjective_iff_locallySurjective_on_lightProfinite, CategoryTheory.GrothendieckTopology.yonedaEquiv_comp, AlgebraicGeometry.StructureSheaf.isLocalizedModule_toPushforwardStalkAlgHom, CategoryTheory.Functor.IsCoverDense.Types.appHom_restrict, cond, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_map, ΓObjEquivSections_naturality_symm, isLocallyInjective_iff_injective, AlgebraicGeometry.StructureSheaf.const_zero, ΓRes_map_assoc, CategoryTheory.Functor.sheafPushforwardContinuous_obj_val_map, CategoryTheory.Functor.IsCoverDense.Types.pushforwardFamily_compatible, TopCat.Sheaf.comp_app, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_app_apply, SheafOfModules.pushforwardCongr_inv_app_val_app, CategoryTheory.Functor.IsCoverDense.Types.appIso_inv, PresheafOfModules.Sheafify.smul_add, CategoryTheory.Equivalence.sheafCongr.unitIso_hom_app_val_app, AlgebraicGeometry.Spec.sheafedSpaceMap_hom_c_app, CategoryTheory.typeEquiv_functor_obj_val_map, CategoryTheory.Functor.IsCoverDense.Types.sheafIso_hom_val, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_app_app, TopCat.subsheafToTypes_val, CategoryTheory.Functor.sheafPushforwardContinuousComp_inv_app_val_app, LightCondensed.ofSheafForgetLightProfinite_val, CompHausLike.LocallyConstant.adjunction_left_triangle, AlgebraicGeometry.StructureSheaf.algebraMap_obj_top_bijective, CategoryTheory.extensiveTopology.isLocallySurjective_iff, TopCat.Sheaf.pushforward_obj_val, SheafOfModules.fullyFaithfulForget_preimage_val, CategoryTheory.Equivalence.sheafCongrPreregular_counitIso_hom_app_val_app, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right_assoc, SheafOfModules.restrictScalars_map_val, CategoryTheory.Equivalence.sheafCongrPrecoherent_counitIso_inv_app_val_app, coneΓ_pt, CategoryTheory.Equivalence.sheafCongr.functor_map_val_app, CategoryTheory.Functor.sheafPushforwardContinuousComp_hom_app_val_app, CondensedSet.continuous_coinducingCoprod, AlgebraicGeometry.Proj.zero_apply, CategoryTheory.Functor.sheafPushforwardContinuous_obj_val_obj, CategoryTheory.Functor.IsCoverDense.Types.presheafIso_inv_app, TopCat.Sheaf.objSupIsoProdEqLocus_inv_snd, AlgebraicGeometry.StructureSheaf.const_algebraMap, CategoryTheory.typeEquiv_inverse_map, SheafOfModules.pushforward_map_val, CategoryTheory.plusPlusAdjunction_counit_app_val, SheafOfModules.pushforwardComp_hom_app_val_app, SheafOfModules.unit_val, SheafOfModules.Presentation.map_relations_I, adjunction_unit_app_val, TopCat.Sheaf.interUnionPullbackConeLift_left, CategoryTheory.Functor.sheafPushforwardContinuousId_hom_app_val_app, SheafOfModules.Presentation.mapRelations_mapGenerators, CondensedSet.topCatAdjunctionUnit_val_app, CategoryTheory.Functor.sheafPushforwardContinuousId'_inv_app_val_app, LightCondensed.hom_ext_iff, SheafOfModules.relationsOfIsCokernelFree_I, AlgebraicGeometry.structureSheafInType.add_apply, LightCondensed.underlying_obj, CategoryTheory.Functor.toSheafify_pullbackSheafificationCompatibility, ΓHomEquiv_naturality_right_symm, CategoryTheory.Functor.IsCoverDense.Types.naturality_apply, CategoryTheory.Equivalence.sheafCongr.functor_obj_val_map, coneΓ_π_app, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_condition, CategoryTheory.Equivalence.sheafCongrPrecoherent_unitIso_inv_app_val_app, ΓRes_map, LightCondSet.hom_naturality_apply, CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv', SheafOfModules.add_val, cartesianMonoidalCategoryWhiskerRight_val, AlgebraicGeometry.Proj.add_apply, AlgebraicGeometry.stalkMap_toStalk_apply, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map_val_app, CategoryTheory.Functor.IsCoverDense.presheafIso_inv, CategoryTheory.GrothendieckTopology.yoneda_obj_val, CategoryTheory.Functor.IsCoverDense.Types.sheafIso_inv_val, AlgebraicGeometry.StructureSheaf.comapₗ_const, CategoryTheory.GrothendieckTopology.yonedaEquiv_naturality, CategoryTheory.typeEquiv_counitIso_hom_app_val_app, CategoryTheory.Functor.IsDenseSubsite.mapPreimage_comp_map_assoc, AlgebraicGeometry.StructureSheaf.algebraMap_germ_assoc, AlgebraicGeometry.StructureSheaf.res_apply, LightCondensed.equalizerCondition, CategoryTheory.Presheaf.instPreservesFiniteProductsOppositeVal, LightCondMod.hom_naturality_apply, CategoryTheory.GrothendieckTopology.map_yonedaULiftEquiv', SheafOfModules.unitToPushforwardObjUnit_val_app_apply, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_apply, CategoryTheory.Functor.IsCoverDense.sheafIso_inv_val, SheafOfModules.forget_map, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_hom_app_app_down, LightCondensed.ihomPoints_symm_apply, CategoryTheory.sheafificationIso_hom_val, SheafOfModules.forgetPreservesLimitsOfSize, id_val, CategoryTheory.Functor.IsCoverDense.sheafCoyonedaHom_app, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_left, AlgebraicGeometry.StructureSheaf.algebraMap_germ, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_map, CategoryTheory.GrothendieckTopology.overMapPullbackComp_inv_app_val_app, CategoryTheory.presheafToSheafCompComposeAndSheafifyIso_inv_app, CategoryTheory.Presheaf.coherentExtensiveEquivalence_functor_obj_val, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafMap_restriction, CategoryTheory.yoneda'_obj_val, CategoryTheory.Functor.IsDenseSubsite.mapPreimage_comp, TopCat.Sheaf.objSupIsoProdEqLocus_hom_snd, AlgebraicGeometry.StructureSheaf.const_mul_cancel', CategoryTheory.Functor.IsCoverDense.homOver_app, TopCat.Sheaf.objSupIsoProdEqLocus_inv_eq_iff, CategoryTheory.Equivalence.sheafCongrPrecoherent_inverse_obj_val_map, lightCondSetToTopCat_obj_carrier, CategoryTheory.Equivalence.sheafCongrPrecoherent_unitIso_hom_app_val_app, SheafOfModules.Finite.forgetPreservesFiniteLimits, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_app_app, SheafOfModules.forget_obj, CategoryTheory.Functor.IsCoverDense.Types.presheafIso_hom_app, CategoryTheory.Functor.sheafPushforwardContinuousCompSheafToPresheafIso_hom_app_app, LightCondMod.epi_iff_locallySurjective_on_lightProfinite, SheafOfModules.comp_val_assoc, LightCondensed.ihom_map_val_app, CategoryTheory.Functor.IsDenseSubsite.mapPreimage_of_eq, AlgebraicGeometry.StructureSheaf.toOpenₗ_top_bijective, AlgebraicGeometry.StructureSheaf.comap_id_eq_map, CategoryTheory.Equivalence.sheafCongrPreregular_inverse_obj_val_obj, CompHausLike.LocallyConstant.counit_app_val, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafObj_hom_ext_iff, Condensed.instPreservesFiniteProductsOppositeStoneanVal, SheafOfModules.pushforwardNatTrans_app_val_app, PresheafOfModules.Sheafify.one_smul, CondensedMod.epi_iff_locallySurjective_on_compHaus, AlgebraicGeometry.ΓSpec.toSpecΓ_of, TopCat.toSheafCompHausLike_val_map, CategoryTheory.Functor.IsCoverDense.Types.presheafHom_app, AlgebraicGeometry.StructureSheaf.toOpen_germ, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_naturality, CategoryTheory.Equivalence.sheafCongr.inverse_obj_val_map, cartesianMonoidalCategoryFst_val, ΓHomEquiv_naturality_right, AlgebraicGeometry.Spec.locallyRingedSpaceObj_presheaf_map', CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv, CategoryTheory.GrothendieckTopology.uliftYonedaIsoYoneda_inv_app_val_app_down, AlgebraicGeometry.Scheme.Modules.instFullPresheafOfModulesToPresheafOfModules, CategoryTheory.Functor.IsCoverDense.isoOver_inv_app, AlgebraicGeometry.StructureSheaf.toPushforwardStalk_comp, TopCat.Sheaf.objSupIsoProdEqLocus_inv_fst, smoothSheaf.ι_evalHom, AlgebraicGeometry.StructureSheaf.toPushforwardStalk_comp_assoc, AlgebraicGeometry.StructureSheaf.toOpenₗ_eq_const, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app, CategoryTheory.sheafificationAdjunction_counit_app_val, AlgebraicGeometry.StructureSheaf.res_const, CategoryTheory.Functor.op_comp_isSheaf, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_comp, CategoryTheory.GrothendieckTopology.overMapPullbackComp_hom_app_val_app, AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToSection_germ, SheafOfModules.relationsOfIsCokernelFree_s, CategoryTheory.constantSheafAdj_counit_w, comp_val_assoc, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_hom_toNatTrans_app_val_app, SheafOfModules.forgetToSheafModuleCat_map_val, LightCondSet.topCatAdjunctionUnit_val_app, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_app_apply, AlgebraicGeometry.StructureSheaf.comap_basicOpen, Condensed.underlying_obj, sheafifyCocone_ι_app_val_assoc, Hom.add_app, AlgebraicGeometry.tilde.toOpen_map_app_assoc, CategoryTheory.Equivalence.sheafCongr.inverse_map_val_app, CategoryTheory.Functor.IsDenseSubsite.map_eq_of_eq, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.presheafMap_π, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_map, CategoryTheory.equivYoneda'_hom_val, CategoryTheory.GrothendieckTopology.overMapPullbackCongr_hom_app_val_app, LightCondensed.id_val, PresheafOfModules.Sheafify.zero_smul, CategoryTheory.Functor.sheafPushforwardContinuousId_inv_app_val_app, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_right, PresheafOfModules.sheafificationAdjunction_homEquiv_apply, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_naturality_left, AlgebraicGeometry.LocallyRingedSpace.SpecΓIdentity_hom_app, SheafOfModules.forgetPreservesLimitsOfShape, SheafOfModules.Presentation.IsFinite.finite_relations, SheafOfModules.pushforwardNatTrans_app_val_app_apply, SheafOfModules.comp_val, AlgebraicGeometry.Spec.locallyRingedSpaceObj_presheaf, CategoryTheory.Functor.IsContinuous.op_comp_isSheaf_of_types, PresheafOfModules.toPresheaf_map_sheafificationAdjunction_unit_app, CondensedSet.toTopCatMap_hom_apply, AlgebraicGeometry.structurePresheafInCommRingCat_obj_carrier, CategoryTheory.Functor.IsCoverDense.Types.appIso_hom, AlgebraicGeometry.StructureSheaf.instAwayObjOppositeOpensCarrierTopValStructureSheafInTypeOpBasicOpen, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right_symm_assoc, LightCondensed.comp_val, PresheafOfModules.instIsLocallyInjectiveToSheafify, CategoryTheory.Equivalence.sheafCongrPrecoherent_functor_map_val_app, AlgebraicGeometry.Scheme.Modules.instIsRightAdjointPresheafOfModulesToPresheafOfModules, CategoryTheory.sheafHomSectionsEquiv_symm_apply_coe_apply, TopCat.Sheaf.eq_of_locally_eq_iff, LightCondensed.underlying_map, PresheafOfModules.toPresheaf_map_sheafificationHomEquiv_def, AlgebraicGeometry.LocallyRingedSpace.toΓSpecSheafedSpace_app_spec, CategoryTheory.GrothendieckTopology.Point.sheafFiberCompIso_hom_app, Condensed.underlying_map, CategoryTheory.Equivalence.sheafCongr.functor_obj_val_obj, CategoryTheory.Equivalence.sheafCongrPreregular_unitIso_inv_app_val_app, AlgebraicGeometry.LocallyRingedSpace.toΓSpecCBasicOpens_app, CategoryTheory.Functor.IsDenseSubsite.isIso_ranCounit_app_of_isDenseSubsite, AlgebraicGeometry.Proj.res_apply, TopCat.Presheaf.app_injective_iff_stalkFunctor_map_injective, AlgebraicGeometry.StructureSheaf.comapₗ_eq_localRingHom, CategoryTheory.Equivalence.sheafCongr.unitIso_inv_app_val_app, SheafOfModules.pushforwardSections_coe, CategoryTheory.GrothendieckTopology.map_yonedaEquiv, PresheafOfModules.Sheafify.smul_zero, PresheafOfModules.Sheafify.map_smul, AlgebraicGeometry.StructureSheaf.toOpen_res, CategoryTheory.coherentTopology.isLocallySurjective_iff, AlgebraicGeometry.structurePresheafInModuleCat_obj_carrier, AlgebraicGeometry.LocallyRingedSpace.toΓSpecSheafedSpace_app_spec_assoc, ΓObjEquivSections_naturality, AlgebraicGeometry.LocallyRingedSpace.toΓSpecCApp_spec, LightCondSet.toTopCatMap_hom_apply, CondensedSet.epi_iff_locallySurjective_on_compHaus, AlgebraicGeometry.StructureSheaf.const_mul, CategoryTheory.Presheaf.coherentExtensiveEquivalence_inverse_obj_val, CategoryTheory.constantSheafAdj_counit_app, PresheafOfModules.toSheafify_app_apply, TopCat.Presheaf.isIso_iff_stalkFunctor_map_iso, TopCat.Sheaf.interUnionPullbackCone_pt, CategoryTheory.sheafSectionsNatIsoEvaluation_hom_app, AlgebraicGeometry.LocallyRingedSpace.toΓSpecSheafedSpace_hom_c_app, CategoryTheory.Functor.sheafAdjunctionCocontinuous_homEquiv_apply_val, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_yonedaULift_map, CategoryTheory.GrothendieckTopology.uliftYoneda_obj_val_obj, CategoryTheory.Functor.sheafPushforwardContinuousId'_hom_app_val_app, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.restriction_map, CategoryTheory.Functor.IsCoverDense.sheafIso_hom_val, AlgebraicGeometry.StructureSheaf.algebraMap_pushforward_stalk, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_inv_toNatTrans_app_val_app, SheafOfModules.forgetToSheafModuleCat_obj_val, CategoryTheory.GrothendieckTopology.uliftYoneda_obj_val_map_down, cartesianMonoidalCategoryWhiskerLeft_val, ΓRes_naturality, AlgebraicGeometry.structureSheafInType.smul_apply, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_hom_toNatTrans_app_val_app, CategoryTheory.GrothendieckTopology.OneHypercover.multiforkLift_map_assoc, Condensed.isSheafProfinite, CategoryTheory.Functor.OneHypercoverDenseData.essSurj.restriction_eq_of_fac, isSeparated, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right, Condensed.id_val, TopCat.Presheaf.mono_iff_stalk_mono, CategoryTheory.Functor.sheafPushforwardContinuousComp'_hom_app_val_app, CategoryTheory.GrothendieckTopology.map_yonedaULiftEquiv, CategoryTheory.GrothendieckTopology.overMapPullbackCongr_inv_app_val_app, CategoryTheory.Equivalence.sheafCongr.counitIso_inv_app_val_app, CategoryTheory.sheafSectionsNatIsoEvaluation_inv_app, AlgebraicGeometry.StructureSheaf.algebraMap_germ_apply, CategoryTheory.Functor.sheafAdjunctionCocontinuous_unit_app_val, SheafOfModules.pushforward_obj_val, Condensed.equalizerCondition_profinite, PresheafOfModules.Sheafify.mul_smul, CategoryTheory.GrothendieckTopology.Point.sheafFiberCompIso_inv_app, CategoryTheory.GrothendieckTopology.uliftYoneda_map_val_app_down, Condensed.equalizerCondition, CategoryTheory.sheafCompose_obj_val, LightCondensed.ofSheafLightProfinite_val, CategoryTheory.Functor.IsCoverDense.Types.pushforwardFamily_apply, CategoryTheory.GrothendieckTopology.yonedaEquiv_yoneda_map, PresheafOfModules.toPresheaf_map_sheafificationHomEquiv, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_comp, CategoryTheory.GrothendieckTopology.yonedaEquiv_apply, SheafOfModules.Finite.evaluationPreservesFiniteLimits, SheafOfModules.instAdditivePresheafOfModulesValRingCatForget, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app_val_app, AlgebraicGeometry.ΓSpec.toSpecΓ_unop, LightCondensed.instPreservesFiniteProductsOppositeLightProfiniteVal, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_naturality_right, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_left_symm, CategoryTheory.Pseudofunctor.sheafHom_val, AlgebraicGeometry.LocallyRingedSpace.toΓSpecCApp_iff, CategoryTheory.Functor.IsCoverDense.Types.naturality_assoc, AlgebraicGeometry.Spec.sheafedSpaceObj_presheaf, AlgebraicGeometry.Spec.map_app, SheafOfModules.unitHomEquiv_apply_coe, image_val, AlgebraicGeometry.tilde.toOpen_map_app, CategoryTheory.Functor.IsCoverDense.Types.naturality

Theorems

NameKindAssumesProvesValidatesDepends On
comp_val 📖mathematicalHom.val
CategoryTheory.CategoryStruct.comp
CategoryTheory.Sheaf
CategoryTheory.Category.toCategoryStruct
instCategorySheaf
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
val
comp_val_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
val
Hom.val
CategoryTheory.Sheaf
instCategorySheaf
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_val
cond 📖mathematicalCategoryTheory.Presheaf.IsSheaf
val
hom_ext 📖Hom.valHom.ext
hom_ext_iff 📖mathematicalHom.valhom_ext
id_val 📖mathematicalHom.val
CategoryTheory.CategoryStruct.id
CategoryTheory.Sheaf
CategoryTheory.Category.toCategoryStruct
instCategorySheaf
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
val

CategoryTheory.Sheaf.Hom

Definitions

NameCategoryTheorems
addCommGroup 📖CompOp
val 📖CompOp
192 mathmath: CategoryTheory.Sheaf.cartesianMonoidalCategoryLift_val, CategoryTheory.GrothendieckTopology.overMapPullbackId_hom_app_val_app, CategoryTheory.Equivalence.sheafCongrPrecoherent_counitIso_hom_app_val_app, CategoryTheory.Equivalence.sheafCongr.counitIso_hom_app_val_app, CategoryTheory.GrothendieckTopology.yonedaOpCompCoyoneda_hom_app_app_down, CategoryTheory.Equivalence.sheafCongrPreregular_counitIso_inv_app_val_app, CategoryTheory.Presheaf.coherentExtensiveEquivalence_functor_map_val, CategoryTheory.eval_app, CategoryTheory.Functor.sheafPushforwardContinuousComp'_inv_app_val_app, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, Condensed.hom_ext_iff, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_apply, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_app_apply, CategoryTheory.GrothendieckTopology.overMapPullbackId_inv_app_val_app, LightCondSet.epi_iff_locallySurjective_on_lightProfinite, CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, CategoryTheory.GrothendieckTopology.yoneda_map_val, CondensedSet.hom_naturality_apply, CategoryTheory.sheafificationNatIso_inv_app_val, CategoryTheory.instIsIsoFunctorOppositeValAppSheafCounitSheafificationAdjunction, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, CategoryTheory.sheafificationNatIso_hom_app_val, CategoryTheory.constantCommuteCompose_hom_app_val, TopCat.Sheaf.pushforward_map, CategoryTheory.Equivalence.sheafCongrPreregular_unitIso_hom_app_val_app, AlgebraicGeometry.Scheme.Modules.toOpen_fromTildeΓ_app, CategoryTheory.sheafCompose_map_val, CategoryTheory.Sheaf.comp_val, Condensed.epi_iff_surjective_on_stonean, CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, CategoryTheory.Functor.sheafAdjunctionCocontinuous_counit_app_val, LightCondSet.topCatAdjunctionUnit_val_app_apply, TopCat.Sheaf.id_app, CategoryTheory.sheafificationIso_inv_val, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp_val_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_inv_toNatTrans_app_val_app, CategoryTheory.Functor.sheafPushforwardContinuousNatTrans_app_val, CompHausLike.LocallyConstantModule.functor_map_val, CompHausLike.LocallyConstant.functor_map_val, CategoryTheory.Presheaf.coherentExtensiveEquivalence_counitIso, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right_symm, CategoryTheory.Functor.sheafPushforwardContinuous_map_val_app, topCatToSheafCompHausLike_map_val_app, CategoryTheory.Sheaf.imageι_val, CategoryTheory.Equivalence.sheafCongrPreregular_functor_map_val_app, CategoryTheory.Presheaf.coherentExtensiveEquivalence_inverse_map_val, CategoryTheory.presheaf_mono_of_mono, CategoryTheory.plusPlusSheaf_map_val, SheafOfModules.restrictScalars_obj_val, CategoryTheory.equivYoneda'_inv_val, CategoryTheory.Equivalence.sheafCongrPreregular_inverse_map_val_app, CategoryTheory.sheafToPresheaf_map, CondensedMod.epi_iff_surjective_on_stonean, CategoryTheory.Sheaf.cartesianMonoidalCategorySnd_val, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_naturality_right, CondensedSet.epi_iff_surjective_on_stonean, CategoryTheory.Equivalence.sheafCongrPrecoherent_inverse_map_val_app, CategoryTheory.Sheaf.toImage_val, CategoryTheory.fullyFaithfulSheafToPresheaf_preimage_val, SheafOfModules.toSheaf_map_val, mono_iff_presheaf_mono, CategoryTheory.sheafBotEquivalence_inverse_map_val, CondensedSet.topCatAdjunctionUnit_val_app_apply, TopCat.Presheaf.stalk_mono_of_mono, CategoryTheory.GrothendieckTopology.map_yonedaEquiv', CategoryTheory.typeEquiv_counitIso_inv_app_val_app, LightCondensed.forget_map_val_app, Condensed.comp_val, AlgebraicGeometry.Scheme.Modules.toOpen_fromTildeΓ_app_assoc, CondensedMod.hom_naturality_apply, Condensed.epi_iff_locallySurjective_on_compHaus, CategoryTheory.Sheaf.adjunction_counit_app_val, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id_val_app, LightCondensed.isLocallySurjective_iff_locallySurjective_on_lightProfinite, CategoryTheory.GrothendieckTopology.yonedaEquiv_comp, CategoryTheory.Sheaf.ΓObjEquivSections_naturality_symm, CategoryTheory.Sheaf.isLocallyInjective_iff_injective, TopCat.Sheaf.comp_app, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_app_apply, CategoryTheory.Equivalence.sheafCongr.unitIso_hom_app_val_app, CategoryTheory.Functor.IsCoverDense.Types.sheafIso_hom_val, CategoryTheory.GrothendieckTopology.uliftYonedaIsoYoneda_hom_app_val_app, CategoryTheory.Functor.sheafPushforwardContinuousComp_inv_app_val_app, CompHausLike.LocallyConstant.adjunction_left_triangle, CategoryTheory.extensiveTopology.isLocallySurjective_iff, CategoryTheory.Equivalence.sheafCongrPreregular_counitIso_hom_app_val_app, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right_assoc, SheafOfModules.restrictScalars_map_val, AlgebraicGeometry.Scheme.LocalRepresentability.yoneda_toGlued_yonedaGluedToSheaf_assoc, CategoryTheory.Equivalence.sheafCongrPrecoherent_counitIso_inv_app_val_app, CategoryTheory.Equivalence.sheafCongr.functor_map_val_app, CategoryTheory.Functor.sheafPushforwardContinuousComp_hom_app_val_app, CategoryTheory.typeEquiv_inverse_map, SheafOfModules.pushforward_map_val, CategoryTheory.plusPlusAdjunction_counit_app_val, CategoryTheory.Sheaf.adjunction_unit_app_val, CategoryTheory.Functor.sheafPushforwardContinuousId_hom_app_val_app, CondensedSet.topCatAdjunctionUnit_val_app, CategoryTheory.Functor.sheafPushforwardContinuousId'_inv_app_val_app, LightCondensed.hom_ext_iff, lightProfiniteToLightCondSetIsoTopCatToLightCondSet_hom_app_val_app_apply, CategoryTheory.Functor.toSheafify_pullbackSheafificationCompatibility, CategoryTheory.Sheaf.ΓHomEquiv_naturality_right_symm, CategoryTheory.Equivalence.sheafCongrPrecoherent_unitIso_inv_app_val_app, LightCondSet.hom_naturality_apply, CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv', AlgebraicGeometry.Scheme.LocalRepresentability.yoneda_toGlued_yonedaGluedToSheaf, CategoryTheory.Sheaf.cartesianMonoidalCategoryWhiskerRight_val, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map_val_app, CategoryTheory.Functor.IsCoverDense.Types.sheafIso_inv_val, CategoryTheory.typeEquiv_counitIso_hom_app_val_app, LightCondMod.hom_naturality_apply, CategoryTheory.GrothendieckTopology.map_yonedaULiftEquiv', SheafOfModules.unitToPushforwardObjUnit_val_app_apply, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_apply, CategoryTheory.Functor.IsCoverDense.sheafIso_inv_val, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_hom_app_app_down, CategoryTheory.sheafificationIso_hom_val, CategoryTheory.Sheaf.id_val, CategoryTheory.GrothendieckTopology.overMapPullbackComp_inv_app_val_app, CategoryTheory.Equivalence.sheafCongrPrecoherent_unitIso_hom_app_val_app, LightCondMod.epi_iff_locallySurjective_on_lightProfinite, LightCondensed.ihom_map_val_app, CompHausLike.LocallyConstant.counit_app_val, CondensedMod.epi_iff_locallySurjective_on_compHaus, CategoryTheory.typeEquiv_functor_map_val_app, CategoryTheory.Sheaf.cartesianMonoidalCategoryFst_val, CategoryTheory.Sheaf.ΓHomEquiv_naturality_right, CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv, CategoryTheory.GrothendieckTopology.uliftYonedaIsoYoneda_inv_app_val_app_down, CategoryTheory.sheafificationAdjunction_counit_app_val, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_comp, AlgebraicGeometry.Scheme.LocalRepresentability.yonedaGluedToSheaf_app_comp, CategoryTheory.GrothendieckTopology.overMapPullbackComp_hom_app_val_app, CategoryTheory.Sheaf.comp_val_assoc, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_hom_toNatTrans_app_val_app, SheafOfModules.forgetToSheafModuleCat_map_val, LightCondSet.topCatAdjunctionUnit_val_app, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_app_apply, CategoryTheory.Sheaf.sheafifyCocone_ι_app_val_assoc, add_app, AlgebraicGeometry.tilde.toOpen_map_app_assoc, CategoryTheory.Equivalence.sheafCongr.inverse_map_val_app, CategoryTheory.equivYoneda'_hom_val, CategoryTheory.GrothendieckTopology.overMapPullbackCongr_hom_app_val_app, LightCondensed.id_val, CategoryTheory.Sheaf.hom_ext_iff, CategoryTheory.Functor.sheafPushforwardContinuousId_inv_app_val_app, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_right, CondensedSet.toTopCatMap_hom_apply, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right_symm_assoc, LightCondensed.comp_val, lightProfiniteToLightCondSetIsoTopCatToLightCondSet_inv_app_val_app_hom_hom, CategoryTheory.Equivalence.sheafCongrPrecoherent_functor_map_val_app, LightCondensed.underlying_map, Condensed.underlying_map, CategoryTheory.Equivalence.sheafCongrPreregular_unitIso_inv_app_val_app, CategoryTheory.Equivalence.sheafCongr.unitIso_inv_app_val_app, CategoryTheory.GrothendieckTopology.map_yonedaEquiv, CategoryTheory.coherentTopology.isLocallySurjective_iff, CategoryTheory.Sheaf.ΓObjEquivSections_naturality, LightCondSet.toTopCatMap_hom_apply, CondensedSet.epi_iff_locallySurjective_on_compHaus, TopCat.Presheaf.isIso_iff_stalkFunctor_map_iso, CategoryTheory.Functor.sheafAdjunctionCocontinuous_homEquiv_apply_val, CategoryTheory.Functor.sheafPushforwardContinuousId'_hom_app_val_app, CategoryTheory.Functor.IsCoverDense.sheafIso_hom_val, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_inv_toNatTrans_app_val_app, CategoryTheory.yoneda'_map_val, CategoryTheory.Sheaf.cartesianMonoidalCategoryWhiskerLeft_val, CategoryTheory.Sheaf.ΓRes_naturality, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_hom_toNatTrans_app_val_app, CategoryTheory.Sheaf.sheafifyCocone_ι_app_val, CategoryTheory.Functor.pushforwardContinuousSheafificationCompatibility_hom_app_val, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right, Condensed.id_val, TopCat.Presheaf.mono_iff_stalk_mono, CategoryTheory.Functor.sheafPushforwardContinuousComp'_hom_app_val_app, CategoryTheory.GrothendieckTopology.map_yonedaULiftEquiv, CategoryTheory.GrothendieckTopology.overMapPullbackCongr_inv_app_val_app, CategoryTheory.Equivalence.sheafCongr.counitIso_inv_app_val_app, CategoryTheory.Functor.sheafAdjunctionCocontinuous_unit_app_val, SheafOfModules.pushforward_obj_val, AlgebraicGeometry.Scheme.LocalRepresentability.yonedaGluedToSheaf_app_toGlued, CategoryTheory.GrothendieckTopology.uliftYoneda_map_val_app_down, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_comp, CategoryTheory.GrothendieckTopology.yonedaEquiv_apply, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app_val_app, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_naturality_right, ext_iff, CategoryTheory.Sheaf.image_val, AlgebraicGeometry.tilde.toOpen_map_app

Theorems

NameKindAssumesProvesValidatesDepends On
add_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
val
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.instAddHomSheaf
CategoryTheory.Functor.obj
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
epi_of_presheaf_epi 📖mathematicalCategoryTheory.Epi
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.reflectsEpimorphisms_of_reflectsColimitsOfShape
CategoryTheory.Limits.reflectsColimitsOfShape_of_reflectsColimits
CategoryTheory.Limits.fullyFaithful_reflectsColimits
CategoryTheory.instFullSheafFunctorOppositeSheafToPresheaf
CategoryTheory.instFaithfulSheafFunctorOppositeSheafToPresheaf
ext 📖val
ext_iff 📖mathematicalvalext
mono_of_presheaf_mono 📖mathematicalCategoryTheory.Mono
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.reflectsMonomorphisms_of_reflectsLimitsOfShape
CategoryTheory.Limits.reflectsLimitsOfShape_of_reflectsLimits
CategoryTheory.Limits.fullyFaithful_reflectsLimits
CategoryTheory.instFullSheafFunctorOppositeSheafToPresheaf
CategoryTheory.instFaithfulSheafFunctorOppositeSheafToPresheaf

---

← Back to Index