Documentation Verification Report

Cech

📁 Source: Mathlib/CategoryTheory/Sites/SheafCohomology/Cech.lean

Statistics

MetricCount
DefinitionscochainComplexFunctor, cosimplicialObjectFunctor, cechComplexFunctor
3
TheoremscochainComplexFunctor_map_f, cochainComplexFunctor_obj_X, cochainComplexFunctor_obj_d, cosimplicialObjectFunctor_map_app, cosimplicialObjectFunctor_obj_map, cosimplicialObjectFunctor_obj_obj
6
Total9

CategoryTheory

Definitions

NameCategoryTheorems
cechComplexFunctor 📖CompOp

CategoryTheory.Limits.FormalCoproduct

Definitions

NameCategoryTheorems
cochainComplexFunctor 📖CompOp
3 mathmath: cochainComplexFunctor_map_f, cochainComplexFunctor_obj_d, cochainComplexFunctor_obj_X
cosimplicialObjectFunctor 📖CompOp
5 mathmath: cosimplicialObjectFunctor_obj_obj, cochainComplexFunctor_map_f, cochainComplexFunctor_obj_d, cosimplicialObjectFunctor_obj_map, cosimplicialObjectFunctor_map_app

Theorems

NameKindAssumesProvesValidatesDepends On
cochainComplexFunctor_map_f 📖mathematicalCategoryTheory.Limits.HasProductsHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Functor.obj
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CochainComplex
HomologicalComplex.instCategory
AlgebraicTopology.alternatingCofaceMapComplex
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
cosimplicialObjectFunctor
CategoryTheory.Functor.map
AddRightCancelSemigroup.toIsRightCancelAdd
cochainComplexFunctor
CategoryTheory.Limits.Pi.map
I
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Limits.FormalCoproduct
category
Opposite.op
obj
CategoryTheory.NatTrans.app
AddRightCancelSemigroup.toIsRightCancelAdd
cochainComplexFunctor_obj_X 📖mathematicalCategoryTheory.Limits.HasProductsHomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CochainComplex
HomologicalComplex.instCategory
cochainComplexFunctor
CategoryTheory.Limits.piObj
I
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Limits.FormalCoproduct
category
Opposite.op
obj
AddRightCancelSemigroup.toIsRightCancelAdd
cochainComplexFunctor_obj_d 📖mathematicalCategoryTheory.Limits.HasProductsHomologicalComplex.d
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CochainComplex
HomologicalComplex.instCategory
cochainComplexFunctor
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.piObj
I
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Limits.FormalCoproduct
category
Opposite.op
obj
CategoryTheory.CategoryStruct.comp
Finset.sum
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Finset.univ
Fin.fintype
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Monoid.toNatPow
Int.instMonoid
CategoryTheory.CosimplicialObject.δ
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
cosimplicialObjectFunctor
CategoryTheory.eqToHom
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
cosimplicialObjectFunctor_map_app 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Limits.FormalCoproduct
CategoryTheory.Category.opposite
category
CategoryTheory.Functor.category
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.rightOp
evalOp
CategoryTheory.Functor.map
cosimplicialObjectFunctor
CategoryTheory.Limits.Pi.map
I
Opposite.op
obj
cosimplicialObjectFunctor_obj_map 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Functor.map
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
cosimplicialObjectFunctor
CategoryTheory.Limits.Pi.lift
I
CategoryTheory.Limits.FormalCoproduct
category
Opposite.op
obj
CategoryTheory.Limits.piObj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Hom.f
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.Pi.π
Hom.φ
cosimplicialObjectFunctor_obj_obj 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
cosimplicialObjectFunctor
CategoryTheory.Limits.piObj
I
CategoryTheory.Limits.FormalCoproduct
category
Opposite.op
obj

---

← Back to Index