Documentation Verification Report

MayerVietoris

📁 Source: Mathlib/CategoryTheory/Sites/SheafCohomology/MayerVietoris.lean

Statistics

MetricCount
DefinitionsfromBiprod, sequence, sequenceIso, toBiprod, δ
5
TheoremsbiprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, fromBiprod_biprodIsoProd_inv_apply, fromBiprod_δ, fromBiprod_δ_assoc, mk₀_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, sequence_exact, toBiprod_apply, toBiprod_fromBiprod, toBiprod_fromBiprod_assoc, δ_toBiprod, δ_toBiprod_assoc
11
Total16

CategoryTheory.GrothendieckTopology.MayerVietorisSquare

Definitions

NameCategoryTheorems
fromBiprod 📖CompOp
6 mathmath: fromBiprod_δ_assoc, mk₀_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, fromBiprod_biprodIsoProd_inv_apply, toBiprod_fromBiprod_assoc, toBiprod_fromBiprod, fromBiprod_δ
sequence 📖CompOp
1 mathmath: sequence_exact
sequenceIso 📖CompOp
toBiprod 📖CompOp
6 mathmath: biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, δ_toBiprod_assoc, δ_toBiprod, toBiprod_fromBiprod_assoc, toBiprod_fromBiprod, toBiprod_apply
δ 📖CompOp
4 mathmath: fromBiprod_δ_assoc, δ_toBiprod_assoc, δ_toBiprod, fromBiprod_δ

Theorems

NameKindAssumesProvesValidatesDepends On
biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply 📖mathematicalCategoryTheory.HasExt
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.sheafIsAbelian
AddCommGrpCat.instAbelian
DFunLike.coe
AddEquiv
CategoryTheory.Abelian.Ext
Opposite.unop
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Functor.comp
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.whiskeringRight
AddCommGrpCat.free
CategoryTheory.presheafToSheaf
CategoryTheory.instHasWeakSheafifyOfHasSheafify
Opposite.op
CategoryTheory.Square.X₂
toSquare
CategoryTheory.Square.X₃
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
Prod.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Abelian.Ext.instAddCommGroup
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
CategoryTheory.Abelian.Ext.biprodAddEquiv
AddCommGrpCat.instPreadditive
CategoryTheory.Sheaf.H'
AddCommGrpCat.instHasBinaryBiproducts
AddCommGrpCat.of
AddCommGrpCat.carrier
Prod.instAddCommGroup
AddCommGrpCat.str
CategoryTheory.ConcreteCategory.hom
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
CategoryTheory.Iso.hom
AddCommGrpCat.biprodIsoProd
CategoryTheory.Square.X₄
toBiprod
CategoryTheory.Abelian.Ext.comp
CategoryTheory.ShortComplex.X₂
CategoryTheory.instPreadditiveSheaf
shortComplex
CategoryTheory.ShortComplex.X₃
CategoryTheory.Abelian.Ext.mk₀
CategoryTheory.ShortComplex.g
zero_add
Nat.instAddMonoid
AddEquiv.injective
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
AddCommGrpCat.instHasBinaryBiproducts
zero_add
toBiprod_apply
CategoryTheory.Iso.inv_hom_id_apply
AddEquiv.apply_symm_apply
CategoryTheory.Abelian.Ext.mk₀_comp_mk₀_assoc
CategoryTheory.Abelian.Ext.comp.congr_simp
CategoryTheory.Limits.biprod.inl_desc
CategoryTheory.Limits.biprod.inr_desc
fromBiprod_biprodIsoProd_inv_apply 📖mathematicalCategoryTheory.HasExt
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.sheafIsAbelian
AddCommGrpCat.instAbelian
DFunLike.coe
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddCommGrpCat.instPreadditive
CategoryTheory.Sheaf.H'
CategoryTheory.Square.X₂
toSquare
CategoryTheory.Square.X₃
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
AddCommGrpCat.instHasBinaryBiproducts
CategoryTheory.Square.X₁
AddCommGrpCat.carrier
CategoryTheory.ConcreteCategory.hom
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
fromBiprod
AddCommGrpCat.of
Prod.instAddCommGroup
CategoryTheory.Iso.inv
AddCommGrpCat.biprodIsoProd
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.cohomologyPresheaf
Opposite.op
SubNegMonoid.toSub
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.f₁₂
CategoryTheory.Square.f₁₃
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
AddCommGrpCat.instHasBinaryBiproducts
CategoryTheory.ConcreteCategory.comp_apply
AddCommGrpCat.biprodIsoProd_inv_comp_desc
CategoryTheory.Preadditive.comp_neg
sub_eq_add_neg
fromBiprod_δ 📖mathematicalCategoryTheory.HasExt
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.sheafIsAbelian
AddCommGrpCat.instAbelian
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddCommGrpCat.instPreadditive
CategoryTheory.Sheaf.H'
CategoryTheory.Square.X₂
toSquare
CategoryTheory.Square.X₃
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
AddCommGrpCat.instHasBinaryBiproducts
CategoryTheory.Square.X₁
CategoryTheory.Square.X₄
fromBiprod
δ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
AddCommGrpCat.instZeroHom_1
CategoryTheory.ComposableArrows.IsComplex.zero
CategoryTheory.ComposableArrows.Exact.toIsComplex
sequence_exact
fromBiprod_δ_assoc 📖mathematicalCategoryTheory.HasExt
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.sheafIsAbelian
AddCommGrpCat.instAbelian
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddCommGrpCat.instPreadditive
CategoryTheory.Sheaf.H'
CategoryTheory.Square.X₂
toSquare
CategoryTheory.Square.X₃
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
AddCommGrpCat.instHasBinaryBiproducts
CategoryTheory.Square.X₁
fromBiprod
CategoryTheory.Square.X₄
δ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
AddCommGrpCat.instZeroHom_1
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
AddCommGrpCat.instHasBinaryBiproducts
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fromBiprod_δ
mk₀_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom 📖mathematicalCategoryTheory.HasExt
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.sheafIsAbelian
AddCommGrpCat.instAbelian
CategoryTheory.Abelian.Ext.comp
CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.instPreadditiveSheaf
AddCommGrpCat.instPreadditive
shortComplex
CategoryTheory.ShortComplex.X₂
CategoryTheory.Abelian.Ext.mk₀
CategoryTheory.ShortComplex.f
DFunLike.coe
AddEquiv
CategoryTheory.Abelian.Ext
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.presheafToSheaf
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.yoneda
CategoryTheory.Square.X₂
toSquare
AddCommGrpCat.free
CategoryTheory.Square.X₃
CategoryTheory.Limits.biprod
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
Prod.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Abelian.Ext.instAddCommGroup
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
CategoryTheory.Abelian.Ext.biprodAddEquiv
CategoryTheory.Sheaf.H'
AddCommGrpCat.instHasBinaryBiproducts
AddCommGrpCat.of
AddCommGrpCat.carrier
Prod.instAddCommGroup
AddCommGrpCat.str
CategoryTheory.ConcreteCategory.hom
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
CategoryTheory.Iso.hom
AddCommGrpCat.biprodIsoProd
zero_add
Nat.instAddMonoid
CategoryTheory.Square.X₁
fromBiprod
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
AddCommGrpCat.instHasBinaryBiproducts
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.Abelian.hasBinaryBiproducts
zero_add
AddEquiv.surjective
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Localization.HasSmallLocalizedHom.small
CategoryTheory.Localization.instHasSmallLocalizedHomObjShiftFunctor
CategoryTheory.Abelian.Ext.biprodAddEquiv_symm_apply
CategoryTheory.Iso.addCommGroupIsoToAddEquiv_symm_apply
fromBiprod_biprodIsoProd_inv_apply
CategoryTheory.Abelian.Ext.comp.congr_simp
CategoryTheory.Iso.inv_hom_id_apply
CategoryTheory.Abelian.Ext.comp_add
CategoryTheory.Abelian.Ext.mk₀_comp_mk₀_assoc
CategoryTheory.Limits.biprod.lift_fst
CategoryTheory.Limits.biprod.lift_snd
CategoryTheory.Abelian.Ext.mk₀_neg
CategoryTheory.Abelian.Ext.neg_comp
sub_eq_add_neg
sequence_exact 📖mathematicalCategoryTheory.HasExt
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.sheafIsAbelian
AddCommGrpCat.instAbelian
CategoryTheory.ComposableArrows.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddCommGrpCat.instPreadditive
sequence
CategoryTheory.ComposableArrows.exact_of_iso
shortComplex_shortExact
CategoryTheory.Abelian.Ext.contravariantSequence_exact
toBiprod_apply 📖mathematicalCategoryTheory.HasExt
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.sheafIsAbelian
AddCommGrpCat.instAbelian
DFunLike.coe
CategoryTheory.Sheaf.H'
CategoryTheory.Square.X₄
toSquare
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddCommGrpCat.instPreadditive
CategoryTheory.Square.X₂
CategoryTheory.Square.X₃
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
AddCommGrpCat.instHasBinaryBiproducts
AddCommGrpCat.carrier
CategoryTheory.ConcreteCategory.hom
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
toBiprod
AddCommGrpCat.of
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.cohomologyPresheaf
Opposite.op
Prod.instAddCommGroup
CategoryTheory.Iso.inv
AddCommGrpCat.biprodIsoProd
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.f₂₄
CategoryTheory.Square.f₃₄
AddEquiv.injective
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
AddCommGrpCat.instHasBinaryBiproducts
CategoryTheory.Iso.addCommGroupIsoToAddEquiv_apply
AddCommGrpCat.biprodIsoProd_inv_comp_fst_apply
CategoryTheory.Iso.hom_inv_id_apply
CategoryTheory.ConcreteCategory.comp_apply
CategoryTheory.Limits.biprod.lift_fst
CategoryTheory.Iso.inv_hom_id_apply
AddCommGrpCat.biprodIsoProd_inv_comp_snd_apply
CategoryTheory.Limits.biprod.lift_snd
toBiprod_fromBiprod 📖mathematicalCategoryTheory.HasExt
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.sheafIsAbelian
AddCommGrpCat.instAbelian
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.H'
CategoryTheory.Square.X₄
toSquare
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddCommGrpCat.instPreadditive
CategoryTheory.Square.X₂
CategoryTheory.Square.X₃
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
AddCommGrpCat.instHasBinaryBiproducts
CategoryTheory.Square.X₁
toBiprod
fromBiprod
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
AddCommGrpCat.instZeroHom_1
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
AddCommGrpCat.instHasBinaryBiproducts
CategoryTheory.Limits.biprod.lift_desc
CategoryTheory.Square.fac
CategoryTheory.Preadditive.comp_neg
toBiprod_fromBiprod_assoc 📖mathematicalCategoryTheory.HasExt
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.sheafIsAbelian
AddCommGrpCat.instAbelian
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.H'
CategoryTheory.Square.X₄
toSquare
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddCommGrpCat.instPreadditive
CategoryTheory.Square.X₂
CategoryTheory.Square.X₃
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
AddCommGrpCat.instHasBinaryBiproducts
toBiprod
CategoryTheory.Square.X₁
fromBiprod
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
AddCommGrpCat.instZeroHom_1
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
AddCommGrpCat.instHasBinaryBiproducts
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toBiprod_fromBiprod
δ_toBiprod 📖mathematicalCategoryTheory.HasExt
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.sheafIsAbelian
AddCommGrpCat.instAbelian
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.H'
CategoryTheory.Square.X₁
toSquare
CategoryTheory.Square.X₄
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddCommGrpCat.instPreadditive
CategoryTheory.Square.X₂
CategoryTheory.Square.X₃
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
AddCommGrpCat.instHasBinaryBiproducts
δ
toBiprod
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
AddCommGrpCat.instZeroHom_1
CategoryTheory.ComposableArrows.IsComplex.zero
CategoryTheory.ComposableArrows.Exact.toIsComplex
sequence_exact
δ_toBiprod_assoc 📖mathematicalCategoryTheory.HasExt
CategoryTheory.Sheaf
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.sheafIsAbelian
AddCommGrpCat.instAbelian
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.H'
CategoryTheory.Square.X₁
toSquare
CategoryTheory.Square.X₄
δ
CategoryTheory.Limits.biprod
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddCommGrpCat.instPreadditive
CategoryTheory.Square.X₂
CategoryTheory.Square.X₃
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
AddCommGrpCat.instHasBinaryBiproducts
toBiprod
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
AddCommGrpCat.instZeroHom_1
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
AddCommGrpCat.instHasBinaryBiproducts
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_toBiprod

---

← Back to Index