Documentation Verification Report

SheafHom

📁 Source: Mathlib/CategoryTheory/Sites/SheafHom.lean

Statistics

MetricCount
Definitionsapp, presheafHom, presheafHomSectionsEquiv, sheafHom, sheafHom', sheafHom'Iso, sheafHomSectionsEquiv
7
Theoremshom, app_cond, exists_app, isAmalgamation_iff, presheafHom_isSheafFor, presheafHom_map_app, presheafHom_map_app_op_mk_id, presheafHom_obj, sheafHomSectionsEquiv_symm_apply_coe_apply
9
Total16

CategoryTheory

Definitions

NameCategoryTheorems
presheafHom 📖CompOp
6 mathmath: presheafHom_obj, Presheaf.functorEnrichedHomCoyonedaObjEquiv_naturality, presheafHom_map_app, Presheaf.IsSheaf.hom, presheafHom_isSheafFor, presheafHom_map_app_op_mk_id
presheafHomSectionsEquiv 📖CompOp
sheafHom 📖CompOp
1 mathmath: sheafHomSectionsEquiv_symm_apply_coe_apply
sheafHom' 📖CompOp
sheafHom'Iso 📖CompOp
sheafHomSectionsEquiv 📖CompOp
1 mathmath: sheafHomSectionsEquiv_symm_apply_coe_apply

Theorems

NameKindAssumesProvesValidatesDepends On
presheafHom_isSheafFor 📖mathematicalPresieve.IsSheafFor
presheafHom
Sieve.arrows
existsUnique_of_exists_of_unique
Limits.IsLimit.hom_ext
Category.assoc
PresheafHom.IsSheafFor.app_cond
Functor.map_comp
op_comp
Over.w
Functor.map_comp_assoc
PresheafHom.isAmalgamation_iff
Category.id_comp
Functor.map_id
Category.comp_id
op_id
NatTrans.ext
NatTrans.naturality
presheafHom_map_app 📖mathematicalCategoryStruct.comp
Category.toCategoryStruct
NatTrans.app
Opposite
Over
Opposite.unop
Opposite.op
Category.opposite
instCategoryOver
Functor.comp
Functor.op
Over.forget
Functor.map
types
presheafHom
Quiver.Hom.op
CategoryStruct.toQuiver
presheafHom_map_app_op_mk_id 📖mathematicalNatTrans.app
Opposite
Over
Opposite.unop
Opposite.op
Category.opposite
instCategoryOver
Functor.comp
Functor.op
Over.forget
Functor.map
types
presheafHom
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
CategoryStruct.id
presheafHom_map_app
Category.id_comp
presheafHom_obj 📖mathematicalFunctor.obj
Opposite
Category.opposite
types
presheafHom
Quiver.Hom
Functor
Over
Opposite.unop
instCategoryOver
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.comp
Functor.op
Over.forget
sheafHomSectionsEquiv_symm_apply_coe_apply 📖mathematicalSet
Set.instMembership
Functor.sections
Opposite
Category.opposite
Sheaf.val
types
sheafHom
DFunLike.coe
Equiv
Quiver.Hom
Sheaf
CategoryStruct.toQuiver
Category.toCategoryStruct
Sheaf.instCategorySheaf
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
sheafHomSectionsEquiv
Functor.map
Over
Opposite.unop
instCategoryOver
GrothendieckTopology.over
GrothendieckTopology.overPullback

CategoryTheory.Presheaf.IsSheaf

Theorems

NameKindAssumesProvesValidatesDepends On
hom 📖mathematicalCategoryTheory.Presheaf.IsSheafCategoryTheory.types
CategoryTheory.presheafHom
CategoryTheory.isSheaf_iff_isSheaf_of_type
CategoryTheory.presheafHom_isSheafFor
CategoryTheory.Presheaf.isSheaf_iff_isLimit
CategoryTheory.GrothendieckTopology.pullback_stable

CategoryTheory.PresheafHom

Theorems

NameKindAssumesProvesValidatesDepends On
isAmalgamation_iff 📖mathematicalCategoryTheory.Presieve.FamilyOfElements.Compatible
CategoryTheory.presheafHom
CategoryTheory.Sieve.arrows
CategoryTheory.Presieve.FamilyOfElements.IsAmalgamation
CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Over
Opposite.unop
Opposite.op
CategoryTheory.Category.opposite
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Over.forget
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.presheafHom_map_app_op_mk_id
CategoryTheory.NatTrans.ext'
CategoryTheory.Sieve.downward_closed
CategoryTheory.Category.id_comp
CategoryTheory.FunctorToTypes.map_id_apply

CategoryTheory.PresheafHom.IsSheafFor

Definitions

NameCategoryTheorems
app 📖CompOp
1 mathmath: app_cond

Theorems

NameKindAssumesProvesValidatesDepends On
app_cond 📖mathematicalCategoryTheory.Presieve.FamilyOfElements.Compatible
CategoryTheory.presheafHom
CategoryTheory.Sieve.arrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
app
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Over
Opposite.unop
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Over.forget
CategoryTheory.CategoryStruct.id
CategoryTheory.NatTrans.app
exists_app
exists_app 📖mathematicalCategoryTheory.Presieve.FamilyOfElements.Compatible
CategoryTheory.presheafHom
CategoryTheory.Sieve.arrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Over
Opposite.unop
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Over.forget
CategoryTheory.CategoryStruct.id
CategoryTheory.NatTrans.app
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Over.w_assoc
CategoryTheory.Category.comp_id
CategoryTheory.NatTrans.naturality
CategoryTheory.FunctorToTypes.map_id_apply
CategoryTheory.presheafHom_map_app_op_mk_id
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.op_comp
CategoryTheory.Over.w
CategoryTheory.Limits.IsLimit.fac

---

← Back to Index