Documentation Verification Report

Sieves

📁 Source: Mathlib/CategoryTheory/Sites/Sieves.lean

Statistics

MetricCount
DefinitionsPresieve, BindStruct, Y, f, g, FunctorPushforwardStructure, premap, preobj, HasPairwisePullbacks, HasPullbacks, bind, bindStruct, bindOfArrows, category, categoryMk, cocone, diagram, functorPullback, functorPushforward, getFunctorPushforwardStructure, hasPullbacks, instInhabited, map, ofArrows, idx, pullbackArrows, singleton, singleton', uncurry, Sieve, BindStruct, arrows, bind, essSurjFullFunctorGaloisInsertion, fullyFaithfulFunctorGaloisCoinsertion, functor, functorInclusion, functorPullback, functorPushforward, galoisCoinsertionOfMono, galoisInsertionOfIsSplitEpi, generate, giGenerate, inf, instCoeFunPresieve, instCompleteLattice, inter, natTransOfLe, ofArrows, h, i, ofObjects, ofTwoArrows, pullback, pushforward, sieveInhabited, sieveOfSubfunctor, sieveOfUliftSubfunctor, sup, toFunctor, toUliftFunctor, uliftFunctor, uliftFunctorInclusion, uliftNatTransOfLe, union, instCompleteLatticePresieve
66
Theoremsbind, fac, fac_assoc, hf, hg, cover, fac, has_pullbacks, hasPullback, bindOfArrows_ofArrows, bind_comp, bind_ofArrows_le_bindOfArrows, exists_eq_ofArrows, functorPullback_id, functorPullback_mem, functorPushforward_comp, functorPushforward_overForget, hasPullback, image_mem_functorPushforward, instHasPairwisePullbacksOfHasPullbacks, instHasPullbackOfHasPairwisePullbacksOfArrows, instHasPullbacksOfArrowsOfHasPullback, instHasPullbacksOfHasPullbacks, instHasPullbacksSingletonOfHasPullback, map_functorPullback, map_id, map_map, map_monotone, map_ofArrows, map_singleton, eq_eqToHom_comp_hom_idx, hom_idx, mk', obj_idx, ofArrows_bind, ofArrows_category, ofArrows_comp_eq_of_surjective, ofArrows_comp_le, ofArrows_eq_ofArrows_uncurry, ofArrows_le_iff, ofArrows_of_unique, ofArrows_pUnit, ofArrows_pullback, ofArrows_surj, pullback_singleton, singleton_eq_iff_domain, singleton_self, uncurry_bind, uncurry_ofArrows, uncurry_pullbackArrows, uncurry_singleton, arrows_eq_top_iff, arrows_ext, arrows_generate_map_eq_functorPushforward, arrows_top, bind_apply, comp_mem_iff, downward_closed, exists_eq_ofArrows, ext, ext_iff, functorInclusion_app, functorInclusion_is_mono, functorInclusion_top_isIso, functorPullback_apply, functorPullback_arrows, functorPullback_bot, functorPullback_comp, functorPullback_id, functorPullback_inter, functorPullback_monotone, functorPullback_pullback, functorPullback_pushforward_le, functorPullback_top, functorPullback_union, functorPushforward_apply, functorPushforward_bot, functorPushforward_comp, functorPushforward_equivalence_eq_pullback, functorPushforward_extend_eq, functorPushforward_functor, functorPushforward_id, functorPushforward_inverse, functorPushforward_le_iff_le_functorPullback, functorPushforward_monotone, functorPushforward_ofObjects_le, functorPushforward_pullback_le, functorPushforward_top, functorPushforward_union, functor_galoisConnection, functor_map_coe, functor_obj, galoisConnection, generate_apply, generate_bot, generate_functorPullback_le, generate_le_iff, generate_map_eq_functorPushforward, generate_mono, generate_of_contains_isSplitEpi, generate_of_singleton_isSplitEpi, generate_sieve, generate_top, id_mem_iff_eq_top, image_mem_functorPushforward, inter_apply, le_functorPushforward_pullback, le_generate, le_pullback_bind, le_pushforward_pullback, mem_functorPushforward_functor, mem_functorPushforward_iff_of_full, mem_functorPushforward_iff_of_full_of_faithful, mem_functorPushforward_inverse, mem_iff_pullback_eq_top, mem_ofArrows_iff, mem_ofObjects_iff, natTransOfLe_app_coe, natTransOfLe_comm, exists, fac, fac_assoc, ofArrows_category, ofArrows_category', ofArrows_eq_ofObjects, ofArrows_eq_pullback_of_isPullback, ofArrows_le_ofObjects, ofArrows_mk, ofObjects_mono, pullbackArrows_comm, pullback_apply, pullback_comp, pullback_eq_top_of_mem, pullback_functorPushforward_equivalence_eq, pullback_id, pullback_inter, pullback_monotone, pullback_ofArrows_of_iso, pullback_ofObjects, pullback_ofObjects_eq_top, pullback_pushforward_le, pullback_top, pushforward_apply, pushforward_apply_comp, pushforward_comp, pushforward_le_bind_of_mem, pushforward_monotone, pushforward_union, sInf_apply, sSup_apply, sieveOfSubfunctor_apply, sieveOfSubfunctor_functorInclusion, sieveOfUliftSubfunctor_apply, sieveOfUliftSubfunctor_uliftFunctorInclusion, toFunctor_app_coe, toUliftFunctor_app_down_coe, top_apply, uliftFunctorInclusion_app, uliftFunctorInclusion_is_mono, uliftFunctorInclusion_top_isIso, uliftNatTransOfLe_app_down_coe, uliftNatTransOfLe_comm, union_apply, top_apply
164
Total230

CategoryTheory

Definitions

NameCategoryTheorems
Presieve 📖CompOp
68 mathmath: GrothendieckTopology.mem_toPretopology, Sieve.generate_mono, Precoverage.ZeroHypercover.Small.exists_restrictIndex_mem, AlgebraicGeometry.Scheme.mem_grothendieckTopology_iff, Types.mem_jointlySurjectivePrecoverage_iff, MorphismProperty.ofArrows_mem_precoverage, AlgebraicGeometry.Scheme.bot_mem_precoverage, Presieve.map_functorPullback, Presieve.ofArrows_mem_comap_jointlySurjectivePrecoverage_iff, AlgebraicGeometry.Scheme.presieve₀_mem_precoverage_iff, Sieve.generate_bot, Precoverage.preZeroHypercoverFamily_property, Sieve.generate_top, Pretopology.mem_toGrothendieck, PreZeroHypercover.presieve₀_mem_iff_of_iso, Presieve.isSheafFor_top_sieve, Precoverage.mem_coverings_of_isIso, Presieve.ofArrows_le_iff, Precoverage.mem_finite_iff, Sieve.le_generate, top_apply, Sieve.arrows_eq_top_iff, Sieve.arrows_top, Presieve.ofArrows_comp_le, MorphismProperty.bot_mem_precoverage, PreZeroHypercover.presieve₀_restrictIndex_le, AlgebraicGeometry.Scheme.mem_overGrothendieckTopology, AlgebraicGeometry.Scheme.AffineZariskiSite.presieveOfSections_surjective, AlgebraicGeometry.Scheme.singleton_mem_precoverage_iff, AlgebraicGeometry.Scheme.presieve₀_mem_qcPrecoverage_iff, Precoverage.HasIsos.mem_coverings_of_isIso, Types.singleton_mem_jointlySurjectivePrecoverage_iff, Precoverage.mem_toGrothendieck_iff_of_isStableUnderComposition, Precoverage.mem_iff_exists_zeroHypercover, Precoverage.ZeroHypercover.presieve₀_mem_of_iso, ofGrothendieck_iff, Presieve.le_of_factorsThru_sieve, AlgebraicGeometry.Scheme.Cover.toPresieveOver_le_arrows_iff, Precoverage.ofArrows_mem_finite, Pretopology.has_isos, Precoverage.ZeroHypercover.Small.mem₀, PreZeroHypercoverFamily.mem_precoverage_iff, Pretopology.mem_inf, GrothendieckTopology.mem_toPrecoverage_iff, AlgebraicGeometry.Scheme.ofArrows_mem_precoverage_iff, Presieve.mem_comap_jointlySurjectivePrecoverage_iff, Pretopology.ofArrows_mem_finite, Pretopology.mem_sInf, PreZeroHypercover.presieve₀_sum, AlgebraicGeometry.Scheme.exists_cover_of_mem_grothendieckTopology, Precoverage.ZeroHypercover.mem₀, Presieve.isSeparatedFor_top, AlgebraicGeometry.Scheme.mem_smallGrothendieckTopology, Pretopology.mem_toCoverage, Coverage.sup_covering, AlgebraicGeometry.Scheme.mem_pretopology_iff, Presieve.factorsThru_top, Sieve.generate_le_iff, AlgebraicGeometry.Scheme.Cover.mem_pretopology, PreZeroHypercover.presieve₀_mem_precoverage_iff, Pretopology.mem_ofGrothendieck, Pretopology.le_def, Presieve.isSheafFor_top, GrothendieckTopology.mem_toCoverage_iff, PreZeroHypercover.presieve₀_add, AlgebraicGeometry.Scheme.pretopology_cover, Types.ofArrows_mem_jointlySurjectivePrecoverage_iff, Precoverage.mem_comap_iff
Sieve 📖CompData
164 mathmath: AlgebraicGeometry.Scheme.bot_mem_grothendieckTopology, GrothendieckTopology.mem_toPretopology, GrothendieckTopology.ext_iff, Sieve.generate_mono, AlgebraicGeometry.Scheme.mem_grothendieckTopology_iff, Sieve.overEquiv_pullback, Sieve.mem_iff_pullback_eq_top, Sieve.generate_functorPullback_le, GrothendieckTopology.OneHypercover.mem₀, Presheaf.imageSieve_app, Functor.OneHypercoverDenseData.mem₁, Sieve.functorPushforward_ofObjects_le, Functor.functorPushforward_imageSieve_mem, Sieve.pullback_monotone, Functor.closedSieves_obj, extensiveTopology.mem_sieves_iff_contains_colimit_cofan, GrothendieckTopology.monotone_close, Functor.functorPushforward_mem_iff, GrothendieckTopology.trivial_covering, GrothendieckTopology.arrow_intersect, GrothendieckTopology.intersection_covering_iff, AlgebraicGeometry.Scheme.mem_jointlySurjectiveTopology_iff_jointlySurjectivePretopology, Sieve.top_apply, Presheaf.isLocallyInjective_iff_equalizerSieve_mem_imp, Sieve.overEquiv_le_overEquiv_iff, Sieve.functorPullback_bot, Sieve.pullback_pushforward_le, Sieve.generate_bot, Sieve.sSup_apply, Sieve.generate_top, GrothendieckTopology.OneHypercover.mem_sieve₁', Sieve.equalizer_self, Pretopology.mem_toGrothendieck, GrothendieckTopology.Cover.preOneHypercover_sieve₀, Coverage.mem_toGrothendieck_sieves_of_superset, GrothendieckTopology.top_mem, Functor.IsLocallyFull.functorPushforward_imageSieve_mem, Sieve.overEquiv_symm_iff, GrothendieckTopology.closureOperator_isClosed, Sieve.functorPushforward_over_map, Presheaf.equalizerSieve_self_eq_top, Functor.OneHypercoverDenseData.mem₁₀, Functor.is_cover_of_isCoverDense, GrothendieckTopology.mem_over_iff, regularTopology.mem_sieves_iff_hasEffectiveEpi, GrothendieckTopology.coversTop_iff_of_isTerminal, Functor.functorPushforward_equalizer_mem, GrothendieckTopology.Cover.preOneHypercover_sieve₁, Functor.IsDenseSubsite.equalizer_mem, Sieve.overEquiv_top, GrothendieckTopology.close_eq_top_iff_mem, Sieve.arrows_eq_top_iff, GrothendieckTopology.coe_copy, Sieve.arrows_top, Sieve.functorPullback_inter, Sieve.le_pullback_bind, AlgebraicGeometry.Scheme.AffineZariskiSite.generate_presieveOfSections_mem_grothendieckTopology, Sieve.generate_of_singleton_isSplitEpi, Sieve.functorPullback_top, GrothendieckTopology.le_def, Sieve.overEquiv_symm_pullback, AlgebraicGeometry.Scheme.mem_overGrothendieckTopology, GrothendieckTopology.Cover.Arrow.hf, Precoverage.mem_toGrothendieck_iff, GrothendieckTopology.mem_sInf, GrothendieckTopology.OneHypercover.IsPreservedBy.mem₁, generate_discretePresieve_mem, Sieve.le_pushforward_pullback, Sieve.functorPushforward_monotone, Pseudofunctor.isPrestackFor_iff_isSheafFor, coherentTopology.mem_sieves_iff_hasEffectiveEpiFamily, Precoverage.generate_mem_toGrothendieck, Functor.LocallyCoverDense.functorPushforward_functorPullback_mem, Functor.pushforward_cover_iff_cover_pullback, Functor.IsDenseSubsite.functorPushforward_mem_iff, Precoverage.mem_toGrothendieck_iff_of_isStableUnderComposition, Presheaf.IsLocallyInjective.equalizerSieve_mem, Sieve.functorPullback_monotone, GrothendieckTopology.Cover.condition, Sieve.pullback_eq_top_of_mem, Functor.inducedTopology_sieves, ofGrothendieck_iff, GrothendieckTopology.dense_covering, Sieve.pullback_inter, GrothendieckTopology.OneHypercover.IsPreservedBy.mem₀, Functor.OneHypercoverDenseData.sieve_mem, Functor.OneHypercoverDenseData.mem₀, Functor.IsLocallyFaithful.functorPushforward_equalizer_mem, Sieve.ofObjects_mono, Sieve.functorPushforward_pullback_le, Sieve.overEquiv_symm_generate, GrothendieckTopology.bot_covering, GrothendieckTopology.mem_sieves_iff_coe, AlgebraicGeometry.Scheme.Cover.toPresieveOver_le_arrows_iff, Presheaf.IsLocallySurjective.imageSieve_mem, AlgebraicGeometry.Scheme.Cover.overEquiv_generate_toPresieveOver_eq_ofArrows, Coverage.mem_toGrothendieck, Presheaf.equalizerSieve_mem, coherentTopology.mem_sieves_of_hasEffectiveEpiFamily, GrothendieckTopology.Cover.ext_iff, Sieve.functorPushforward_union, GrothendieckTopology.mem_toPrecoverage_iff, Sieve.le_functorPushforward_pullback, Sieve.functorPushforward_bot, Sieve.sInf_apply, GrothendieckTopology.le_close, Sieve.galoisConnection, Presieve.bind_ofArrows_le_bindOfArrows, TopCat.Presheaf.presieveOfCovering.mem_grothendieckTopology, Sieve.functor_galoisConnection, Sieve.pushforward_union, GrothendieckTopology.pullback_mem_iff_of_isIso, Functor.closedSieves_map_coe, Sieve.functorInclusion_top_isIso, GrothendieckTopology.covering_iff_covers_id, Sieve.pushforward_le_bind_of_mem, Sieve.overEquiv_symm_top, sieve₁'_toPreOneHypercover_eq_top, AlgebraicGeometry.Scheme.AffineZariskiSite.mem_grothendieckTopology, Sieve.functorPushforward_top, Sieve.functorPullback_pushforward_le, Sieve.functorPushforward_le_iff_le_functorPullback, Functor.IsCoverDense.is_cover, AlgebraicGeometry.Scheme.mem_smallGrothendieckTopology, regularTopology.mem_sieves_of_hasEffectiveEpi, Sieve.union_apply, GrothendieckTopology.Cover.Arrow.to_middle_condition, GrothendieckTopology.top_mem', regularTopology.exists_effectiveEpi_iff_mem_induced, Presheaf.equalizerSieve_eq_top_iff, Sieve.inter_apply, AlgebraicGeometry.Scheme.grothendieckTopology_cover, Sieve.overEquiv_generate, Functor.imageSieve_map, Sieve.pullback_top, Sieve.uliftFunctorInclusion_top_isIso, Sieve.id_mem_iff_eq_top, coherentTopology.exists_effectiveEpiFamily_iff_mem_induced, GrothendieckTopology.covers_iff, Sieve.pullback_ofObjects_eq_top, Sieve.pushforward_monotone, Sieve.generate_le_iff, Pseudofunctor.isPrestackFor_iff_isSheafFor', Functor.IsCoverDense.functorPullback_pushforward_covering, GrothendieckTopology.Cover.Arrow.from_middle_condition, Functor.mem_inducedTopology_sieves_iff, Pretopology.mem_ofGrothendieck, PreOneHypercover.sieve₀_trivial, AlgebraicGeometry.Scheme.mem_toGrothendieck_smallPretopology, GrothendieckTopology.mem_toCoverage_iff, PreOneHypercover.sieve₁_trivial, AlgebraicGeometry.Scheme.AffineZariskiSite.mem_grothendieckTopology_iff_sectionsOfPresieve, Functor.IsDenseSubsite.imageSieve_mem, Presheaf.imageSieve_mem, GrothendieckTopology.Cover.coe_pullback, discreteSieve_mem, Sieve.generate_of_contains_isSplitEpi, Sieve.overEquiv_iff, Sieve.ofArrows_le_ofObjects, GrothendieckTopology.OneHypercover.mem₁, PreZeroHypercover.Hom.sieve₀_le_sieve₀, AlgebraicGeometry.Scheme.Cover.mem_grothendieckTopology, Sieve.functorPullback_union, GrothendieckTopology.top_covering
instCompleteLatticePresieve 📖CompOp
30 mathmath: Sieve.generate_mono, AlgebraicGeometry.Scheme.mem_grothendieckTopology_iff, AlgebraicGeometry.Scheme.bot_mem_precoverage, Presieve.map_functorPullback, Sieve.generate_bot, Sieve.generate_top, Pretopology.mem_toGrothendieck, Presieve.isSheafFor_top_sieve, Presieve.ofArrows_le_iff, Sieve.le_generate, top_apply, Sieve.arrows_eq_top_iff, Sieve.arrows_top, Presieve.ofArrows_comp_le, MorphismProperty.bot_mem_precoverage, PreZeroHypercover.presieve₀_restrictIndex_le, AlgebraicGeometry.Scheme.mem_overGrothendieckTopology, Precoverage.mem_toGrothendieck_iff_of_isStableUnderComposition, Presieve.le_of_factorsThru_sieve, Precoverage.sup_mem_coverings, Precoverage.IsStableUnderSup.sup_mem_coverings, AlgebraicGeometry.Scheme.Cover.toPresieveOver_le_arrows_iff, PreZeroHypercover.presieve₀_sum, AlgebraicGeometry.Scheme.exists_cover_of_mem_grothendieckTopology, Presieve.isSeparatedFor_top, AlgebraicGeometry.Scheme.mem_smallGrothendieckTopology, Presieve.factorsThru_top, Sieve.generate_le_iff, Presieve.isSheafFor_top, PreZeroHypercover.presieve₀_add

Theorems

NameKindAssumesProvesValidatesDepends On
top_apply 📖mathematicalTop.top
Presieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticePresieve
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder

CategoryTheory.Presieve

Definitions

NameCategoryTheorems
BindStruct 📖CompData
FunctorPushforwardStructure 📖CompData
HasPairwisePullbacks 📖CompData
4 mathmath: CategoryTheory.Precoverage.hasPairwisePullbacks_of_mem, instHasPairwisePullbacksOfHasPullbacks, HasPairwisePullbacks.map_of_preservesPairwisePullbacks, CategoryTheory.instHasPairwisePullbacksOfExtensive
HasPullbacks 📖CompData
6 mathmath: instHasPullbacksOfArrowsOfHasPullback, CategoryTheory.Precoverage.ZeroHypercover.instHasPullbacksPresieve₀OfHasPullbacks, instHasPullbacksOfHasPullbacks, CategoryTheory.Precoverage.hasPullbacks_of_mem, CategoryTheory.Precoverage.HasPullbacks.hasPullbacks_of_mem, instHasPullbacksSingletonOfHasPullback
bind 📖CompOp
6 mathmath: uncurry_bind, CategoryTheory.Sieve.bind_apply, CategoryTheory.Pretopology.transitive, bind_comp, BindStruct.bind, ofArrows_bind
bindOfArrows 📖CompData
4 mathmath: CategoryTheory.PreOneHypercover.sieve₀_cylinder, bind_ofArrows_le_bindOfArrows, CategoryTheory.GrothendieckTopology.bindOfArrows, bindOfArrows_ofArrows
category 📖CompOp
22 mathmath: CategoryTheory.Sieve.ofArrows_category', CategoryTheory.Presheaf.isSheaf_iff_isLimit_coverage, CategoryTheory.Sieve.ofArrows_category, CategoryTheory.Presheaf.isLimit_iff_isSheafFor_presieve, CategoryTheory.regularTopology.equalizerConditionMap_iff_nonempty_isLimit, CategoryTheory.Presheaf.isSeparated_iff_subsingleton, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, ofArrows_category, CategoryTheory.regularTopology.parallelPair_pullback_initial, CategoryTheory.Pseudofunctor.isStackFor_iff, CategoryTheory.Presheaf.isSheaf_iff_isLimit, CategoryTheory.Sieve.yonedaFamily_fromCocone_compatible, CategoryTheory.Pseudofunctor.IsStack.essSurj_of_sieve, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, CategoryTheory.Pseudofunctor.isPrestackFor_iff, CategoryTheory.Pseudofunctor.IsStackFor.isEquivalence, CategoryTheory.Sieve.forallYonedaIsSheaf_iff_colimit, CategoryTheory.Pseudofunctor.IsStackFor.essSurj, CategoryTheory.Presheaf.isLimit_iff_isSheafFor, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, CategoryTheory.Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful, CategoryTheory.Presheaf.isSheaf_iff_isLimit_pretopology
categoryMk 📖CompOp
1 mathmath: CategoryTheory.regularTopology.parallelPair_pullback_initial
cocone 📖CompOp
11 mathmath: CategoryTheory.Presheaf.isSheaf_iff_isLimit_coverage, CategoryTheory.Presheaf.isLimit_iff_isSheafFor_presieve, CategoryTheory.regularTopology.equalizerConditionMap_iff_nonempty_isLimit, CategoryTheory.Presheaf.isSeparated_iff_subsingleton, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.Presheaf.isSheaf_iff_isLimit, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, CategoryTheory.Sieve.forallYonedaIsSheaf_iff_colimit, CategoryTheory.Presheaf.isLimit_iff_isSheafFor, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, CategoryTheory.Presheaf.isSheaf_iff_isLimit_pretopology
diagram 📖CompOp
12 mathmath: CategoryTheory.Presheaf.isSheaf_iff_isLimit_coverage, CategoryTheory.Presheaf.isLimit_iff_isSheafFor_presieve, CategoryTheory.regularTopology.equalizerConditionMap_iff_nonempty_isLimit, CategoryTheory.Presheaf.isSeparated_iff_subsingleton, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.Presheaf.isSheaf_iff_isLimit, CategoryTheory.Sieve.yonedaFamily_fromCocone_compatible, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, CategoryTheory.Sieve.forallYonedaIsSheaf_iff_colimit, CategoryTheory.Presheaf.isLimit_iff_isSheafFor, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, CategoryTheory.Presheaf.isSheaf_iff_isLimit_pretopology
functorPullback 📖CompOp
9 mathmath: functorPullback_mem, CategoryTheory.Sieve.generate_functorPullback_le, map_functorPullback, CategoryTheory.Sieve.functorPullback_arrows, functorPullback_id, CategoryTheory.Sieve.overEquiv_symm_generate, FamilyOfElements.Compatible.functorPullback, map_functorPullback_overForget, CategoryTheory.Sieve.functorPullback_apply
functorPushforward 📖CompOp
10 mathmath: CategoryTheory.Sieve.mem_functorPushforward_iff_of_full, CategoryTheory.Sieve.functorPushforward_apply, CategoryTheory.Sieve.functorPushforward_extend_eq, FamilyOfElements.Compatible.functorPushforward, functorPushforward_overForget, CategoryTheory.Sieve.arrows_generate_map_eq_functorPushforward, image_mem_functorPushforward, CategoryTheory.Sieve.mem_functorPushforward_iff_of_full_of_faithful, CategoryTheory.Sieve.overEquiv_generate, functorPushforward_comp
getFunctorPushforwardStructure 📖CompOp
hasPullbacks 📖MathDef
instInhabited 📖CompOp
map 📖CompData
14 mathmath: map_functorPullback, HasPairwisePullbacks.map_of_preservesPairwisePullbacks, CategoryTheory.PreZeroHypercover.presieve₀_map, map_map, IsSheafFor.comp_iff_of_preservesPairwisePullbacks, map_ofArrows, functorPushforward_overForget, map_monotone, CategoryTheory.Sieve.arrows_generate_map_eq_functorPushforward, map_functorPullback_overForget, map_id, CategoryTheory.Sieve.generate_map_eq_functorPushforward, map_singleton, CategoryTheory.Precoverage.mem_comap_iff
ofArrows 📖CompData
52 mathmath: instHasPullbacksOfArrowsOfHasPullback, exists_eq_ofArrows, ofArrows_comp_eq_of_surjective, ofArrows_eq_ofArrows_uncurry, AlgebraicGeometry.Scheme.mem_grothendieckTopology_iff, CategoryTheory.MorphismProperty.ofArrows_mem_precoverage, ofArrows_mem_comap_jointlySurjectivePrecoverage_iff, CategoryTheory.Pseudofunctor.isStackFor_ofArrows_iff, ofArrows.mk', ofArrows_le_iff, CategoryTheory.Pseudofunctor.isPrestackFor_ofArrows_iff, isSheafFor_arrows_iff, map_ofArrows, regular.single_epi, ofArrows_comp_le, AlgebraicGeometry.Scheme.exists_cover_of_mem_pretopology, ofArrows_category, CategoryTheory.regularTopology.parallelPair_pullback_initial, CategoryTheory.Pseudofunctor.bijective_toDescentData_map_iff, FamilyOfElements.isAmalgamation_iff_ofArrows, isSheafFor_of_preservesProduct, CategoryTheory.Sieve.generateFamily_eq, CategoryTheory.Precoverage.mem_iff_exists_zeroHypercover, CategoryTheory.instExtensiveOfArrowsι, ofArrows_pullback, Arrows.Compatible.familyOfElements_compatible, CategoryTheory.Equalizer.Presieve.Arrows.sheaf_condition, isSheafFor_over_map_op_comp_ofArrows_iff, AlgebraicGeometry.Scheme.Cover.toPresieveOver_le_arrows_iff, CategoryTheory.Precoverage.ofArrows_mem_finite, CategoryTheory.PreOneHypercover.sieve₀_cylinder, ofArrows_of_unique, uncurry_ofArrows, AlgebraicGeometry.Scheme.ofArrows_mem_precoverage_iff, CategoryTheory.Pretopology.ofArrows_mem_finite, ofArrows_pUnit, isSheafFor_arrows_iff_pullbacks, CategoryTheory.Sieve.effectiveEpimorphic_family, CategoryTheory.PreOneHypercover.sieve₁'_cylinder, CategoryTheory.isSheaf_coherent, AlgebraicGeometry.Scheme.exists_cover_of_mem_grothendieckTopology, CategoryTheory.PreOneHypercover.toPullback_cylinder, Extensive.arrows_nonempty_isColimit, AlgebraicGeometry.Scheme.mem_pretopology_iff, ofArrows_bind, AlgebraicGeometry.Scheme.Cover.mem_pretopology, AlgebraicGeometry.Scheme.AffineZariskiSite.presieveOfSections_eq_ofArrows, AlgebraicGeometry.Scheme.pretopology_cover, CategoryTheory.Types.ofArrows_mem_jointlySurjectivePrecoverage_iff, isSheafFor_ofArrows_iff_bijective_toCompabible, isSheafFor_ofArrows_comp_iff, bindOfArrows_ofArrows
pullbackArrows 📖CompData
8 mathmath: CategoryTheory.PreZeroHypercover.presieve₀_pullback₁, ofArrows_pullback, CategoryTheory.Precoverage.pullbackArrows_mem, pullback_singleton, CategoryTheory.Sieve.pullbackArrows_comm, uncurry_pullbackArrows, FactorsThruAlong.pullbackArrows, CategoryTheory.Pretopology.pullbacks
singleton 📖CompData
28 mathmath: isSeparatedFor_singleton, CategoryTheory.Sieve.generateSingleton_eq, FamilyOfElements.compatible_singleton_iff, isSheafFor_singleton, FamilyOfElements.singletonEquiv_symm_apply_self, FamilyOfElements.singletonEquiv_apply, CategoryTheory.Precoverage.mem_coverings_of_isIso, uncurry_singleton, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff, CategoryTheory.Sieve.effectiveEpimorphic_singleton, CategoryTheory.Sieve.generate_of_singleton_isSplitEpi, singleton_self, AlgebraicGeometry.Scheme.singleton_mem_precoverage_iff, CategoryTheory.Precoverage.HasIsos.mem_coverings_of_isIso, CategoryTheory.Types.singleton_mem_jointlySurjectivePrecoverage_iff, pullback_singleton, FamilyOfElements.isAmalgamation_singleton_iff, CategoryTheory.Pretopology.has_isos, isSheafFor_singleton_iff_of_iso, ofArrows_of_unique, singleton_eq_iff_domain, ofArrows_pUnit, CategoryTheory.PreZeroHypercover.presieve₀_singleton, isSheafFor_singleton_iso, map_singleton, CategoryTheory.Equalizer.Presieve.isSheafFor_singleton_iff_of_hasPullback, CategoryTheory.PreZeroHypercover.presieve₀_add, instHasPullbacksSingletonOfHasPullback
singleton' 📖CompOp
uncurry 📖CompOp
11 mathmath: ofArrows_eq_ofArrows_uncurry, uncurry_bind, preZeroHypercover_I₀, preZeroHypercover_X, CategoryTheory.Precoverage.mem_finite_iff, uncurry_singleton, preZeroHypercover_f, CategoryTheory.PreZeroHypercover.shrink_X, uncurry_ofArrows, uncurry_pullbackArrows, CategoryTheory.PreZeroHypercover.shrink_f

Theorems

NameKindAssumesProvesValidatesDepends On
bindOfArrows_ofArrows 📖mathematicalbindOfArrows
ofArrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
le_antisymm
bind_comp 📖mathematicalbind
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
bind_ofArrows_le_bindOfArrows 📖mathematicalCategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.Sieve.instCompleteLattice
CategoryTheory.Sieve.bind
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.ofArrows
CategoryTheory.Sieve.pullback
CategoryTheory.Sieve.ofArrows.i
CategoryTheory.Sieve.ofArrows.h
CategoryTheory.Sieve.generate
bindOfArrows
CategoryTheory.Sieve.ofArrows.fac
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
exists_eq_ofArrows 📖mathematicalofArrowsle_antisymm
functorPullback_id 📖mathematicalfunctorPullback
CategoryTheory.Functor.id
functorPullback_mem 📖mathematicalfunctorPullback
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
functorPushforward_comp 📖mathematicalfunctorPushforward
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
Set.ext
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
functorPushforward_overForget 📖mathematicalfunctorPushforward
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.forget
CategoryTheory.Sieve.arrows
CategoryTheory.Functor.obj
CategoryTheory.Sieve.generate
map
le_antisymm
hasPullback 📖mathematicalCategoryTheory.Limits.HasPullbackHasPullbacks.hasPullback
image_mem_functorPushforward 📖mathematicalfunctorPushforward
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Category.id_comp
instHasPairwisePullbacksOfHasPullbacks 📖mathematicalHasPairwisePullbacksCategoryTheory.Limits.hasLimitOfHasLimitsOfShape
instHasPullbackOfHasPairwisePullbacksOfArrows 📖mathematicalCategoryTheory.Limits.HasPullbackHasPairwisePullbacks.has_pullbacks
instHasPullbacksOfArrowsOfHasPullback 📖mathematicalCategoryTheory.Limits.HasPullbackHasPullbacks
ofArrows
instHasPullbacksOfHasPullbacks 📖mathematicalHasPullbacksCategoryTheory.Limits.hasLimitOfHasLimitsOfShape
instHasPullbacksSingletonOfHasPullback 📖mathematicalHasPullbacks
singleton
map_functorPullback 📖mathematicalCategoryTheory.Presieve
CategoryTheory.Functor.obj
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticePresieve
map
functorPullback
map_id 📖mathematicalmap
CategoryTheory.Functor.id
le_antisymm
map_map 📖mathematicalmap
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
map_monotone 📖mathematicalCategoryTheory.Presieve
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticePresieve
CategoryTheory.Functor.obj
map
map_ofArrows 📖mathematicalmap
ofArrows
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
le_antisymm
ofArrows_surj
CategoryTheory.Category.id_comp
map_map
map_singleton 📖mathematicalmap
singleton
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
ofArrows_pUnit
map_ofArrows
ofArrows_bind 📖mathematicalbind
ofArrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Set.ext
bind_comp
ofArrows_category 📖mathematicalofArrows
category
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma.hom
le_antisymm
ofArrows_comp_eq_of_surjective 📖mathematicalofArrowsle_antisymm
ofArrows_comp_le
ofArrows_comp_le 📖mathematicalCategoryTheory.Presieve
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticePresieve
ofArrows
ofArrows_eq_ofArrows_uncurry 📖mathematicalofArrows
Set.Elem
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
uncurry
ofArrows.idx
Set
Set.instMembership
le_antisymm
ofArrows.mk'
ofArrows.obj_idx
ofArrows.hom_idx
CategoryTheory.eqToHom_trans_assoc
CategoryTheory.Category.id_comp
ofArrows_le_iff 📖mathematicalCategoryTheory.Presieve
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticePresieve
ofArrows
ofArrows_of_unique 📖mathematicalofArrows
singleton
Unique.instInhabited
le_antisymm
ofArrows_le_iff
Unique.instSubsingleton
ofArrows_pUnit 📖mathematicalofArrows
singleton
ofArrows_of_unique
ofArrows_pullback 📖mathematicalCategoryTheory.Limits.HasPullbackofArrows
CategoryTheory.Limits.pullback
CategoryTheory.Limits.pullback.snd
pullbackArrows
instHasPullbacksOfArrowsOfHasPullback
instHasPullbacksOfArrowsOfHasPullback
Set.ext
hasPullback
ofArrows_surj 📖mathematicalofArrowsCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Category.id_comp
pullback_singleton 📖mathematicalpullbackArrows
singleton
instHasPullbacksSingletonOfHasPullback
CategoryTheory.Limits.pullback
CategoryTheory.Limits.pullback.snd
instHasPullbacksSingletonOfHasPullback
Set.ext
hasPullback
singleton_eq_iff_domain 📖mathematicalsingleton
singleton_self 📖mathematicalsingleton
uncurry_bind 📖mathematicaluncurry
bind
Set.iUnion
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Set
Set.instMembership
Set.image
Sigma.map
CategoryTheory.CategoryStruct.comp
Set.ext
uncurry_ofArrows 📖mathematicaluncurry
ofArrows
Set.range
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Set.ext
uncurry_pullbackArrows 📖mathematicaluncurry
pullbackArrows
instHasPullbacksOfHasPullbacks
Set.image
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.pullback.snd
Set.ext
instHasPullbacksOfHasPullbacks
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
hasPullback
uncurry_singleton 📖mathematicaluncurry
singleton
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Set
Set.instSingletonSet
Set.ext
Set.mem_singleton_iff

CategoryTheory.Presieve.BindStruct

Definitions

NameCategoryTheorems
Y 📖CompOp
4 mathmath: fac_assoc, hf, fac, hg
f 📖CompOp
4 mathmath: fac_assoc, hf, fac, hg
g 📖CompOp
3 mathmath: fac_assoc, fac, hg

Theorems

NameKindAssumesProvesValidatesDepends On
bind 📖mathematicalCategoryTheory.Presieve.bindhf
hg
fac
fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Y
g
f
fac_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Y
g
f
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
hf 📖mathematicalY
f
hg 📖mathematicalY
f
hf
g

CategoryTheory.Presieve.FunctorPushforwardStructure

Definitions

NameCategoryTheorems
premap 📖CompOp
2 mathmath: fac, cover
preobj 📖CompOp
2 mathmath: fac, cover

Theorems

NameKindAssumesProvesValidatesDepends On
cover 📖mathematicalpreobj
premap
fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
preobj
lift
CategoryTheory.Functor.map
premap

CategoryTheory.Presieve.HasPairwisePullbacks

Theorems

NameKindAssumesProvesValidatesDepends On
has_pullbacks 📖mathematicalCategoryTheory.Limits.HasPullback

CategoryTheory.Presieve.HasPullbacks

Theorems

NameKindAssumesProvesValidatesDepends On
hasPullback 📖mathematicalCategoryTheory.Limits.HasPullback

CategoryTheory.Presieve.bind

Definitions

NameCategoryTheorems
bindStruct 📖CompOp

CategoryTheory.Presieve.ofArrows

Definitions

NameCategoryTheorems
idx 📖CompOp
4 mathmath: CategoryTheory.Presieve.ofArrows_eq_ofArrows_uncurry, eq_eqToHom_comp_hom_idx, hom_idx, obj_idx

Theorems

NameKindAssumesProvesValidatesDepends On
eq_eqToHom_comp_hom_idx 📖mathematicalCategoryTheory.Presieve.ofArrowsCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
idx
CategoryTheory.eqToHom
obj_idx
CategoryTheory.Presieve.ofArrows_surj
hom_idx 📖mathematicalCategoryTheory.Presieve.ofArrowsidx
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
obj_idx
obj_idx
eq_eqToHom_comp_hom_idx
CategoryTheory.eqToHom_trans_assoc
CategoryTheory.Category.id_comp
mk' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Presieve.ofArrowsCategoryTheory.Category.id_comp
obj_idx 📖mathematicalCategoryTheory.Presieve.ofArrowsidxCategoryTheory.Presieve.ofArrows_surj

CategoryTheory.Sieve

Definitions

NameCategoryTheorems
BindStruct 📖CompOp
arrows 📖CompOp
134 mathmath: TopCat.Presheaf.generateEquivalenceOpensLe_functor'_obj_obj, CategoryTheory.Presieve.isSheafFor_pullback_iff, pullback_apply, CategoryTheory.Pseudofunctor.isPrestackFor', mem_functorPushforward_iff_of_full, CategoryTheory.Equalizer.Sieve.equalizer_sheaf_condition, functor_obj, CategoryTheory.Functor.OneHypercoverDenseData.sieve_apply, AlgebraicGeometry.Scheme.mem_grothendieckTopology_iff, TopCat.Presheaf.generateEquivalenceOpensLe_unitIso, pushforward_apply, mem_iff_pullback_eq_top, CategoryTheory.Presheaf.isSheaf_iff_isLimit_coverage, functorPushforward_apply, CategoryTheory.extensiveTopology.mem_sieves_iff_contains_colimit_cofan, CategoryTheory.Presieve.isAmalgamation_sieveExtend, AlgebraicGeometry.Scheme.mem_jointlySurjectiveTopology_iff_jointlySurjectivePretopology, top_apply, functorPullback_arrows, AlgebraicGeometry.Scheme.AffineZariskiSite.generate_presieveOfSections, ofArrows_mk, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_right_as, bind_apply, mem_ofObjects_iff, equalizer_apply, ext_iff, ofArrows_category, sSup_apply, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_hom, CategoryTheory.Equalizer.Sieve.w, CategoryTheory.Pretopology.mem_toGrothendieck, CategoryTheory.Presieve.isSheafFor_iff_yonedaSheafCondition, CategoryTheory.Presheaf.isLimit_iff_isSheafFor_presieve, CategoryTheory.regularTopology.equalizerConditionMap_iff_nonempty_isLimit, comp_mem_iff, overEquiv_symm_iff, functorPushforward_extend_eq, CategoryTheory.Precoverage.isSheaf_toGrothendieck_iff, le_generate, CategoryTheory.regularTopology.mem_sieves_iff_hasEffectiveEpi, CategoryTheory.Presheaf.IsSheaf.isSheafFor, CategoryTheory.GrothendieckTopology.bot_covers, CategoryTheory.GrothendieckTopology.close_apply, CategoryTheory.Presheaf.isSeparated_iff_subsingleton, CategoryTheory.discreteSieve_apply, arrows_eq_top_iff, arrows_top, generate_sieve, CategoryTheory.Pseudofunctor.IsStackFor_generate_iff, sieveOfUliftSubfunctor_apply, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.Presieve.functorPushforward_overForget, AlgebraicGeometry.Scheme.mem_overGrothendieckTopology, CategoryTheory.GrothendieckTopology.Cover.Arrow.hf, CategoryTheory.Presheaf.imageSieve_apply, CategoryTheory.regularTopology.parallelPair_pullback_initial, CategoryTheory.Pseudofunctor.isPrestackFor_iff_isSheafFor, functorInclusion_app, CategoryTheory.coherentTopology.mem_sieves_iff_hasEffectiveEpiFamily, CategoryTheory.Presheaf.isSheaf_iff_isLimit, CategoryTheory.Presieve.isSheafFor_iff_generate, uliftNatTransOfLe_app_down_coe, CategoryTheory.Precoverage.mem_toGrothendieck_iff_of_isStableUnderComposition, sieveOfSubfunctor_apply, TopCat.Presheaf.generateEquivalenceOpensLe_functor, uliftFunctorInclusion_app, mem_functorPushforward_inverse, CategoryTheory.GrothendieckTopology.dense_covering, TopCat.Presheaf.generateEquivalenceOpensLe_counitIso, yonedaFamily_fromCocone_compatible, CategoryTheory.Pseudofunctor.IsStack.essSurj_of_sieve, CategoryTheory.Presieve.isSheafFor_over_map_op_comp_iff, CategoryTheory.GrothendieckTopology.bind_covering, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, arrows_generate_map_eq_functorPushforward, AlgebraicGeometry.Scheme.Cover.toPresieveOver_le_arrows_iff, CategoryTheory.PreOneHypercover.sieve₀_cylinder, CategoryTheory.GrothendieckTopology.Cover.ext_iff, CategoryTheory.Presieve.compatibleEquivGenerateSieveCompatible_apply_coe, mem_functorPushforward_functor, sInf_apply, CategoryTheory.Pseudofunctor.IsPrestackFor_generate_iff, CategoryTheory.Presieve.restrict_extend, CategoryTheory.Presieve.bind_ofArrows_le_bindOfArrows, forallYonedaIsSheaf_iff_colimit, CategoryTheory.Presieve.FamilyOfElements.isAmalgamation_map_localPreimage, CategoryTheory.PreOneHypercover.sieve₁_apply, CategoryTheory.Pseudofunctor.isStackFor', natTransOfLe_app_coe, AlgebraicGeometry.Scheme.AffineZariskiSite.mem_grothendieckTopology, AlgebraicGeometry.Scheme.exists_cover_of_mem_grothendieckTopology, CategoryTheory.Subfunctor.Subpresheaf.family_of_elements_compatible, CategoryTheory.Equalizer.Sieve.compatible_iff, CategoryTheory.presheafHom_isSheafFor, functor_map_coe, CategoryTheory.Presheaf.equalizerSieve_apply, CategoryTheory.GrothendieckTopology.covers_iff_mem_of_isClosed, CategoryTheory.Presieve.compatible_iff_sieveCompatible, CategoryTheory.PreZeroHypercover.sieve₀_f, AlgebraicGeometry.Scheme.mem_smallGrothendieckTopology, union_apply, mem_functorPushforward_iff_of_full_of_faithful, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_left, CategoryTheory.GrothendieckTopology.Cover.Arrow.to_middle_condition, CategoryTheory.regularTopology.exists_effectiveEpi_iff_mem_induced, CategoryTheory.Presieve.extension_iff_amalgamation, inter_apply, CategoryTheory.Presieve.FamilyOfElements.Compatible.sieveExtend, mem_ofArrows_iff, CategoryTheory.Presheaf.isLimit_iff_isSheafFor, CategoryTheory.PreOneHypercover.sieve₁_inter, CategoryTheory.Presheaf.FamilyOfElementsOnObjects.IsCompatible.familyOfElements_isCompatible, CategoryTheory.Functor.PreOneHypercoverDenseData.sieve₁₀_apply, TopCat.Presheaf.generateEquivalenceOpensLe_functor'_map, id_mem_iff_eq_top, functorPullback_apply, CategoryTheory.coherentTopology.exists_effectiveEpiFamily_iff_mem_induced, generate_le_iff, CategoryTheory.Pseudofunctor.isPrestackFor_iff_isSheafFor', CategoryTheory.Equalizer.Sieve.SecondObj.ext_iff, CategoryTheory.GrothendieckTopology.Cover.Arrow.from_middle_condition, CategoryTheory.Subfunctor.family_of_elements_compatible, generate_apply, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_map, CategoryTheory.Subfunctor.sieveOfSection_apply, AlgebraicGeometry.Scheme.mem_toGrothendieck_smallPretopology, CategoryTheory.Presieve.compatibleEquivGenerateSieveCompatible_symm_apply_coe, AlgebraicGeometry.Scheme.AffineZariskiSite.mem_grothendieckTopology_iff_sectionsOfPresieve, CategoryTheory.Presieve.isSeparatedFor_iff_generate, CategoryTheory.GrothendieckTopology.Cover.coe_pullback, overEquiv_iff, TopCat.Presheaf.generateEquivalenceOpensLe_inverse, CategoryTheory.Presheaf.isSheaf_iff_isLimit_pretopology
bind 📖CompOp
8 mathmath: bind_apply, le_pullback_bind, CategoryTheory.GrothendieckTopology.bind_covering, CategoryTheory.Presieve.bind_ofArrows_le_bindOfArrows, pushforward_le_bind_of_mem, CategoryTheory.Presieve.isSheafFor_bind, CategoryTheory.Sheaf.isSheafFor_bind, CategoryTheory.PreOneHypercover.sieve₁_inter
essSurjFullFunctorGaloisInsertion 📖CompOp
fullyFaithfulFunctorGaloisCoinsertion 📖CompOp
functor 📖CompOp
14 mathmath: functor_obj, sieveOfSubfunctor_functorInclusion, natTransOfLe_comm, functorInclusion_app, uliftNatTransOfLe_app_down_coe, CategoryTheory.Presieve.IsSheafFor.functorInclusion_comp_extend, functorInclusion_top_isIso, natTransOfLe_app_coe, CategoryTheory.Presieve.IsSheafFor.functorInclusion_comp_extend_assoc, functorInclusion_is_mono, functor_map_coe, CategoryTheory.Presieve.extension_iff_amalgamation, toFunctor_app_coe, toUliftFunctor_app_down_coe
functorInclusion 📖CompOp
8 mathmath: sieveOfSubfunctor_functorInclusion, natTransOfLe_comm, functorInclusion_app, CategoryTheory.Presieve.IsSheafFor.functorInclusion_comp_extend, functorInclusion_top_isIso, CategoryTheory.Presieve.IsSheafFor.functorInclusion_comp_extend_assoc, functorInclusion_is_mono, CategoryTheory.Presieve.extension_iff_amalgamation
functorPullback 📖CompOp
22 mathmath: generate_functorPullback_le, functorPullback_arrows, functorPullback_id, functorPullback_comp, functorPullback_bot, functorPullback_inter, functorPullback_top, functorPushforward_inverse, CategoryTheory.Functor.LocallyCoverDense.functorPushforward_functorPullback_mem, CategoryTheory.Functor.pushforward_cover_iff_cover_pullback, functorPullback_monotone, functorPullback_pullback, le_functorPushforward_pullback, functorPushforward_functor, functor_galoisConnection, functorPullback_pushforward_le, functorPushforward_le_iff_le_functorPullback, functorPullback_apply, CategoryTheory.Functor.cover_lift, CategoryTheory.Functor.IsCoverDense.functorPullback_pushforward_covering, CategoryTheory.Functor.IsCocontinuous.cover_lift, functorPullback_union
functorPushforward 📖CompOp
35 mathmath: functorPushforward_ofObjects_le, CategoryTheory.Functor.functorPushforward_imageSieve_mem, functorPushforward_apply, CategoryTheory.Functor.functorPushforward_mem_iff, pullback_functorPushforward_equivalence_eq, functorPushforward_id, CategoryTheory.Functor.IsLocallyFull.functorPushforward_imageSieve_mem, functorPushforward_over_map, CategoryTheory.Functor.functorPushforward_equalizer_mem, functorPushforward_inverse, functorPushforward_monotone, functorPushforward_comp, CategoryTheory.Functor.LocallyCoverDense.functorPushforward_functorPullback_mem, CategoryTheory.Functor.pushforward_cover_iff_cover_pullback, CategoryTheory.Functor.IsDenseSubsite.functorPushforward_mem_iff, mem_functorPushforward_inverse, CategoryTheory.Functor.inducedTopology_sieves, CategoryTheory.Functor.IsLocallyFaithful.functorPushforward_equalizer_mem, CategoryTheory.Presieve.isSheafFor_over_map_op_comp_iff, functorPushforward_pullback_le, functorPushforward_union, le_functorPushforward_pullback, generate_map_eq_functorPushforward, mem_functorPushforward_functor, CategoryTheory.CoverPreserving.cover_preserve, functorPushforward_bot, functorPushforward_functor, functor_galoisConnection, functorPushforward_top, functorPullback_pushforward_le, functorPushforward_le_iff_le_functorPullback, CategoryTheory.Functor.IsCoverDense.functorPullback_pushforward_covering, CategoryTheory.Functor.mem_inducedTopology_sieves_iff, image_mem_functorPushforward, functorPushforward_equivalence_eq_pullback
galoisCoinsertionOfMono 📖CompOp
galoisInsertionOfIsSplitEpi 📖CompOp
generate 📖CompOp
58 mathmath: TopCat.Presheaf.generateEquivalenceOpensLe_functor'_obj_obj, CategoryTheory.GrothendieckTopology.mem_toPretopology, generate_mono, TopCat.Presheaf.generateEquivalenceOpensLe_unitIso, ofArrows_category', generate_functorPullback_le, CategoryTheory.Presheaf.isSheaf_iff_isLimit_coverage, CategoryTheory.Presieve.isAmalgamation_sieveExtend, generateSingleton_eq, AlgebraicGeometry.Scheme.AffineZariskiSite.generate_presieveOfSections, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_right_as, generate_bot, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_hom, generate_top, CategoryTheory.Presheaf.isLimit_iff_isSheafFor_presieve, functorPushforward_extend_eq, CategoryTheory.Precoverage.isSheaf_toGrothendieck_iff, le_generate, generate_sieve, CategoryTheory.Pseudofunctor.IsStackFor_generate_iff, AlgebraicGeometry.Scheme.AffineZariskiSite.generate_presieveOfSections_mem_grothendieckTopology, generate_of_singleton_isSplitEpi, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.Presieve.functorPushforward_overForget, CategoryTheory.generate_discretePresieve_mem, CategoryTheory.Precoverage.generate_mem_toGrothendieck, CategoryTheory.Presieve.isSheafFor_iff_generate, generateFamily_eq, TopCat.Presheaf.generateEquivalenceOpensLe_functor, CategoryTheory.ofGrothendieck_iff, TopCat.Presheaf.generateEquivalenceOpensLe_counitIso, overEquiv_symm_generate, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, arrows_generate_map_eq_functorPushforward, AlgebraicGeometry.Scheme.Cover.overEquiv_generate_toPresieveOver_eq_ofArrows, CategoryTheory.PreOneHypercover.sieve₀_cylinder, CategoryTheory.GrothendieckTopology.mem_toPrecoverage_iff, CategoryTheory.Presieve.compatibleEquivGenerateSieveCompatible_apply_coe, generate_map_eq_functorPushforward, CategoryTheory.Pseudofunctor.IsPrestackFor_generate_iff, CategoryTheory.Presieve.restrict_extend, CategoryTheory.Presieve.bind_ofArrows_le_bindOfArrows, TopCat.Presheaf.presieveOfCovering.mem_grothendieckTopology, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_left, pullbackArrows_comm, CategoryTheory.Presieve.FamilyOfElements.Compatible.sieveExtend, overEquiv_generate, TopCat.Presheaf.generateEquivalenceOpensLe_functor'_map, generate_le_iff, CategoryTheory.Pretopology.mem_ofGrothendieck, generate_apply, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_map, CategoryTheory.GrothendieckTopology.mem_toCoverage_iff, CategoryTheory.Presieve.compatibleEquivGenerateSieveCompatible_symm_apply_coe, CategoryTheory.Presieve.isSeparatedFor_iff_generate, generate_of_contains_isSplitEpi, TopCat.Presheaf.generateEquivalenceOpensLe_inverse, CategoryTheory.Presheaf.isSheaf_iff_isLimit_pretopology
giGenerate 📖CompOp
inf 📖CompOp
instCoeFunPresieve 📖CompOp
instCompleteLattice 📖CompOp
75 mathmath: AlgebraicGeometry.Scheme.bot_mem_grothendieckTopology, generate_mono, mem_iff_pullback_eq_top, generate_functorPullback_le, CategoryTheory.Presheaf.imageSieve_app, functorPushforward_ofObjects_le, pullback_monotone, CategoryTheory.GrothendieckTopology.monotone_close, CategoryTheory.GrothendieckTopology.trivial_covering, CategoryTheory.GrothendieckTopology.arrow_intersect, CategoryTheory.GrothendieckTopology.intersection_covering_iff, top_apply, overEquiv_le_overEquiv_iff, functorPullback_bot, pullback_pushforward_le, generate_bot, sSup_apply, generate_top, equalizer_self, CategoryTheory.GrothendieckTopology.top_mem, CategoryTheory.GrothendieckTopology.closureOperator_isClosed, CategoryTheory.Presheaf.equalizerSieve_self_eq_top, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_sieve₁, overEquiv_top, CategoryTheory.GrothendieckTopology.close_eq_top_iff_mem, arrows_eq_top_iff, arrows_top, functorPullback_inter, le_pullback_bind, generate_of_singleton_isSplitEpi, functorPullback_top, le_pushforward_pullback, functorPushforward_monotone, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.exists_oneHypercover, functorPullback_monotone, pullback_eq_top_of_mem, CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsGenerating.le, pullback_inter, ofObjects_mono, functorPushforward_pullback_le, CategoryTheory.GrothendieckTopology.bot_covering, CategoryTheory.GrothendieckTopology.intersection_covering, functorPushforward_union, le_functorPushforward_pullback, functorPushforward_bot, sInf_apply, CategoryTheory.GrothendieckTopology.le_close, galoisConnection, CategoryTheory.Presieve.bind_ofArrows_le_bindOfArrows, functor_galoisConnection, pushforward_union, functorInclusion_top_isIso, pushforward_le_bind_of_mem, overEquiv_symm_top, CategoryTheory.sieve₁'_toPreOneHypercover_eq_top, functorPushforward_top, functorPullback_pushforward_le, functorPushforward_le_iff_le_functorPullback, union_apply, CategoryTheory.GrothendieckTopology.top_mem', CategoryTheory.Presheaf.equalizerSieve_eq_top_iff, inter_apply, CategoryTheory.Functor.imageSieve_map, pullback_top, uliftFunctorInclusion_top_isIso, id_mem_iff_eq_top, pullback_ofObjects_eq_top, pushforward_monotone, generate_le_iff, CategoryTheory.PreOneHypercover.sieve₀_trivial, CategoryTheory.PreOneHypercover.sieve₁_trivial, generate_of_contains_isSplitEpi, ofArrows_le_ofObjects, CategoryTheory.PreZeroHypercover.Hom.sieve₀_le_sieve₀, functorPullback_union
inter 📖CompOp
natTransOfLe 📖CompOp
2 mathmath: natTransOfLe_comm, natTransOfLe_app_coe
ofArrows 📖CompOp
15 mathmath: ofArrows_category', ofArrows_mk, ofArrows_category, CategoryTheory.regularTopology.equalizerConditionMap_iff_nonempty_isLimit, CategoryTheory.regularTopology.parallelPair_pullback_initial, AlgebraicGeometry.Scheme.Cover.overEquiv_generate_toPresieveOver_eq_ofArrows, CategoryTheory.Presieve.bind_ofArrows_le_bindOfArrows, pullback_ofArrows_of_iso, AlgebraicGeometry.Scheme.grothendieckTopology_cover, mem_ofArrows_iff, exists_eq_ofArrows, ofArrows_le_ofObjects, ofArrows_eq_ofObjects, ofArrows_eq_pullback_of_isPullback, AlgebraicGeometry.Scheme.Cover.mem_grothendieckTopology
ofObjects 📖CompOp
9 mathmath: functorPushforward_ofObjects_le, mem_ofObjects_iff, CategoryTheory.GrothendieckTopology.coversTop_iff_of_isTerminal, pullback_ofObjects, ofObjects_mono, CategoryTheory.Presheaf.FamilyOfElementsOnObjects.IsCompatible.familyOfElements_isCompatible, pullback_ofObjects_eq_top, ofArrows_le_ofObjects, ofArrows_eq_ofObjects
ofTwoArrows 📖CompOp
pullback 📖CompOp
42 mathmath: CategoryTheory.Presieve.isSheafFor_pullback_iff, pullback_apply, overEquiv_pullback, mem_iff_pullback_eq_top, pullback_monotone, pullback_functorPushforward_equivalence_eq, CategoryTheory.GrothendieckTopology.isClosed_pullback, pullback_pushforward_le, CategoryTheory.GrothendieckTopology.pullback_stable', CategoryTheory.Precoverage.isSheaf_toGrothendieck_iff, CategoryTheory.PreOneHypercover.sieve₁_eq_pullback_sieve₁', CategoryTheory.Coverage.Saturate.pullback, le_pullback_bind, CategoryTheory.GrothendieckTopology.pullback_stable, overEquiv_symm_pullback, functorPushforward_inverse, CategoryTheory.Presieve.FamilyOfElements.Compatible.pullback, le_pushforward_pullback, CategoryTheory.Coverage.eq_top_pullback, pullback_eq_top_of_mem, pullback_comp, pullback_ofObjects, pullback_inter, functorPullback_pullback, CategoryTheory.Presieve.isSheafFor_over_map_op_comp_iff, functorPushforward_pullback_le, CategoryTheory.PreOneHypercover.sieve₀_cylinder, functorPushforward_functor, galoisConnection, CategoryTheory.Presieve.bind_ofArrows_le_bindOfArrows, CategoryTheory.GrothendieckTopology.pullback_mem_iff_of_isIso, CategoryTheory.Functor.closedSieves_map_coe, CategoryTheory.PreOneHypercover.sieve₁'_cylinder, pullback_ofArrows_of_iso, pullbackArrows_comm, pullback_top, CategoryTheory.PreOneHypercover.sieve₁_inter, CategoryTheory.GrothendieckTopology.covers_iff, pullback_id, CategoryTheory.GrothendieckTopology.pullback_close, functorPushforward_equivalence_eq_pullback, ofArrows_eq_pullback_of_isPullback
pushforward 📖CompOp
9 mathmath: pushforward_apply, pullback_pushforward_le, pushforward_comp, le_pushforward_pullback, galoisConnection, pushforward_union, pushforward_le_bind_of_mem, pushforward_monotone, pushforward_apply_comp
sieveInhabited 📖CompOp
sieveOfSubfunctor 📖CompOp
2 mathmath: sieveOfSubfunctor_functorInclusion, sieveOfSubfunctor_apply
sieveOfUliftSubfunctor 📖CompOp
2 mathmath: sieveOfUliftSubfunctor_apply, sieveOfUliftSubfunctor_uliftFunctorInclusion
sup 📖CompOp
toFunctor 📖CompOp
1 mathmath: toFunctor_app_coe
toUliftFunctor 📖CompOp
1 mathmath: toUliftFunctor_app_down_coe
uliftFunctor 📖CompOp
7 mathmath: uliftNatTransOfLe_comm, uliftNatTransOfLe_app_down_coe, uliftFunctorInclusion_app, sieveOfUliftSubfunctor_uliftFunctorInclusion, uliftFunctorInclusion_is_mono, uliftFunctorInclusion_top_isIso, toUliftFunctor_app_down_coe
uliftFunctorInclusion 📖CompOp
5 mathmath: uliftNatTransOfLe_comm, uliftFunctorInclusion_app, sieveOfUliftSubfunctor_uliftFunctorInclusion, uliftFunctorInclusion_is_mono, uliftFunctorInclusion_top_isIso
uliftNatTransOfLe 📖CompOp
2 mathmath: uliftNatTransOfLe_comm, uliftNatTransOfLe_app_down_coe
union 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
arrows_eq_top_iff 📖mathematicalarrows
Top.top
CategoryTheory.Presieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticePresieve
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Sieve
instCompleteLattice
arrows_ext
arrows_top
arrows_ext 📖arrows
arrows_generate_map_eq_functorPushforward 📖mathematicalarrows
CategoryTheory.Functor.obj
generate
CategoryTheory.Presieve.map
CategoryTheory.Presieve.functorPushforward
Set.ext
arrows_top 📖mathematicalarrows
Top.top
CategoryTheory.Sieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Presieve
CategoryTheory.instCompleteLatticePresieve
bind_apply 📖mathematicalarrows
bind
CategoryTheory.Presieve.bind
comp_mem_iff 📖mathematicalarrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsIso.inv_hom_id_assoc
downward_closed
downward_closed 📖mathematicalarrowsCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
exists_eq_ofArrows 📖mathematicalofArrowsofArrows_category
ext 📖arrowsarrows_ext
ext_iff 📖mathematicalarrowsext
functorInclusion_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
functor
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
functorInclusion
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
arrows
functorInclusion_is_mono 📖mathematicalCategoryTheory.Mono
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
functor
CategoryTheory.Functor.obj
CategoryTheory.yoneda
functorInclusion
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
CategoryTheory.NatTrans.congr_app
functorInclusion_top_isIso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
functor
Top.top
CategoryTheory.Sieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Functor.obj
CategoryTheory.yoneda
functorInclusion
functorPullback_apply 📖mathematicalarrows
functorPullback
CategoryTheory.Presieve.functorPullback
CategoryTheory.Functor.obj
functorPullback_arrows 📖mathematicalarrows
functorPullback
CategoryTheory.Presieve.functorPullback
CategoryTheory.Functor.obj
functorPullback_bot 📖mathematicalfunctorPullback
Bot.bot
CategoryTheory.Sieve
CategoryTheory.Functor.obj
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
functorPullback_comp 📖mathematicalfunctorPullback
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
ext
functorPullback_id 📖mathematicalfunctorPullback
CategoryTheory.Functor.id
ext
functorPullback_inter 📖mathematicalfunctorPullback
CategoryTheory.Sieve
CategoryTheory.Functor.obj
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
instCompleteLattice
functorPullback_monotone 📖mathematicalMonotone
CategoryTheory.Sieve
CategoryTheory.Functor.obj
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
functorPullback
GaloisConnection.monotone_u
functor_galoisConnection
functorPullback_pullback 📖mathematicalfunctorPullback
pullback
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
ext
CategoryTheory.Functor.map_comp
functorPullback_pushforward_le 📖mathematicalCategoryTheory.Sieve
CategoryTheory.Functor.obj
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
functorPushforward
functorPullback
GaloisConnection.l_u_le
functor_galoisConnection
functorPullback_top 📖mathematicalfunctorPullback
Top.top
CategoryTheory.Sieve
CategoryTheory.Functor.obj
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
functorPullback_union 📖mathematicalfunctorPullback
CategoryTheory.Sieve
CategoryTheory.Functor.obj
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
functorPushforward_apply 📖mathematicalarrows
CategoryTheory.Functor.obj
functorPushforward
CategoryTheory.Presieve.functorPushforward
functorPushforward_bot 📖mathematicalfunctorPushforward
Bot.bot
CategoryTheory.Sieve
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
CategoryTheory.Functor.obj
GaloisConnection.l_bot
functor_galoisConnection
functorPushforward_comp 📖mathematicalfunctorPushforward
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
ext
CategoryTheory.Presieve.functorPushforward_comp
functorPushforward_equivalence_eq_pullback 📖mathematicalfunctorPushforward
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
pullback
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitInv
ext
CategoryTheory.Functor.map_comp
CategoryTheory.Equivalence.inv_fun_map
CategoryTheory.Category.assoc
CategoryTheory.Equivalence.unit_inverse_comp
CategoryTheory.Category.comp_id
CategoryTheory.NatIso.inv_app_isIso
functorPushforward_extend_eq 📖mathematicalCategoryTheory.Presieve.functorPushforward
arrows
generate
Set.ext
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
le_generate
functorPushforward_functor 📖mathematicalfunctorPushforward
CategoryTheory.Equivalence.functor
functorPullback
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.obj
pullback
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitInv
ext
CategoryTheory.Functor.map_comp
CategoryTheory.Equivalence.inv_fun_map
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.Category.comp_id
downward_closed
CategoryTheory.Equivalence.fun_inv_map
CategoryTheory.Equivalence.counitInv_functor_comp
CategoryTheory.Iso.inv_hom_id_app_assoc
functorPushforward_id 📖mathematicalfunctorPushforward
CategoryTheory.Functor.id
ext
downward_closed
CategoryTheory.Category.id_comp
functorPushforward_inverse 📖mathematicalfunctorPushforward
CategoryTheory.Equivalence.inverse
functorPullback
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.obj
pullback
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counit
functorPushforward_functor
functorPushforward_le_iff_le_functorPullback 📖mathematicalCategoryTheory.Sieve
CategoryTheory.Functor.obj
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
functorPushforward
functorPullback
GaloisConnection.le_iff_le
functor_galoisConnection
functorPushforward_monotone 📖mathematicalMonotone
CategoryTheory.Sieve
CategoryTheory.Functor.obj
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
functorPushforward
GaloisConnection.monotone_l
functor_galoisConnection
functorPushforward_ofObjects_le 📖mathematicalCategoryTheory.Sieve
CategoryTheory.Functor.obj
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
functorPushforward
ofObjects
functorPushforward_pullback_le 📖mathematicalCategoryTheory.Sieve
CategoryTheory.Functor.obj
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
functorPushforward
pullback
CategoryTheory.Functor.map
functorPushforward_le_iff_le_functorPullback
functorPullback_pullback
pullback_monotone
le_functorPushforward_pullback
functorPushforward_top 📖mathematicalfunctorPushforward
Top.top
CategoryTheory.Sieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Functor.obj
generate_sieve
generate_of_contains_isSplitEpi
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.IsIso.id
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
functorPushforward_union 📖mathematicalfunctorPushforward
CategoryTheory.Sieve
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
CategoryTheory.Functor.obj
GaloisConnection.l_sup
functor_galoisConnection
functor_galoisConnection 📖mathematicalGaloisConnection
CategoryTheory.Sieve
CategoryTheory.Functor.obj
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
functorPushforward
functorPullback
CategoryTheory.Category.id_comp
downward_closed
functor_map_coe 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
arrows
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
functor
CategoryTheory.CategoryStruct.comp
Quiver.Hom.unop
functor_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
functor
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
arrows
galoisConnection 📖mathematicalGaloisConnection
CategoryTheory.Sieve
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
pushforward
pullback
generate_apply 📖mathematicalarrows
generate
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
generate_bot 📖mathematicalgenerate
Bot.bot
CategoryTheory.Presieve
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticePresieve
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
CategoryTheory.Sieve
instCompleteLattice
generate_functorPullback_le 📖mathematicalCategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
generate
CategoryTheory.Presieve.functorPullback
functorPullback
CategoryTheory.Functor.obj
generate_le_iff
le_generate
generate_le_iff 📖mathematicalCategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
generate
CategoryTheory.Presieve
CategoryTheory.instCompleteLatticePresieve
arrows
CategoryTheory.Category.id_comp
downward_closed
generate_map_eq_functorPushforward 📖mathematicalgenerate
CategoryTheory.Functor.obj
CategoryTheory.Presieve.map
functorPushforward
ext
arrows_generate_map_eq_functorPushforward
functorPushforward_extend_eq
generate_mono 📖mathematicalMonotone
CategoryTheory.Presieve
CategoryTheory.Sieve
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticePresieve
instCompleteLattice
generate
GaloisConnection.monotone_l
GaloisInsertion.gc
generate_of_contains_isSplitEpi 📖mathematicalgenerate
Top.top
CategoryTheory.Sieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
id_mem_iff_eq_top
CategoryTheory.IsSplitEpi.id
generate_of_singleton_isSplitEpi 📖mathematicalgenerate
CategoryTheory.Presieve.singleton
Top.top
CategoryTheory.Sieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
generate_of_contains_isSplitEpi
CategoryTheory.Presieve.singleton_self
generate_sieve 📖mathematicalgenerate
arrows
GaloisInsertion.l_u_eq
generate_top 📖mathematicalgenerate
Top.top
CategoryTheory.Presieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticePresieve
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Sieve
instCompleteLattice
generate_of_contains_isSplitEpi
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.IsIso.id
id_mem_iff_eq_top 📖mathematicalarrows
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Top.top
CategoryTheory.Sieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
top_unique
CategoryTheory.Category.comp_id
downward_closed
image_mem_functorPushforward 📖mathematicalarrowsCategoryTheory.Functor.obj
functorPushforward
CategoryTheory.Functor.map
CategoryTheory.Category.id_comp
inter_apply 📖mathematicalarrows
CategoryTheory.Sieve
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
instCompleteLattice
le_functorPushforward_pullback 📖mathematicalCategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
functorPullback
functorPushforward
GaloisConnection.le_u_l
functor_galoisConnection
le_generate 📖mathematicalCategoryTheory.Presieve
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticePresieve
arrows
generate
GaloisConnection.le_u_l
GaloisInsertion.gc
le_pullback_bind 📖mathematicalCategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
pullback
bind
galoisConnection
pushforward_le_bind_of_mem
le_pushforward_pullback 📖mathematicalCategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
pullback
pushforward
GaloisConnection.le_u_l
galoisConnection
mem_functorPushforward_functor 📖mathematicalarrows
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
functorPushforward
CategoryTheory.Equivalence.inverse
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Equivalence.unitInv
functorPushforward_functor
mem_functorPushforward_iff_of_full 📖mathematicalCategoryTheory.Presieve.functorPushforward
arrows
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_surjective
CategoryTheory.Functor.map_comp
downward_closed
CategoryTheory.Category.id_comp
mem_functorPushforward_iff_of_full_of_faithful 📖mathematicalCategoryTheory.Presieve.functorPushforward
arrows
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
mem_functorPushforward_iff_of_full
CategoryTheory.Functor.map_injective
mem_functorPushforward_inverse 📖mathematicalarrows
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.inverse
functorPushforward
CategoryTheory.Equivalence.functor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Equivalence.counit
functorPushforward_inverse
mem_iff_pullback_eq_top 📖mathematicalarrows
pullback
Top.top
CategoryTheory.Sieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
id_mem_iff_eq_top
pullback_apply
CategoryTheory.Category.id_comp
mem_ofArrows_iff 📖mathematicalarrows
ofArrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
downward_closed
mem_ofObjects_iff 📖mathematicalarrows
ofObjects
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
natTransOfLe_app_coe 📖mathematicalCategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
arrows
CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
functor
natTransOfLe
natTransOfLe_comm 📖mathematicalCategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
functor
CategoryTheory.Functor.obj
CategoryTheory.yoneda
natTransOfLe
functorInclusion
ofArrows_category 📖mathematicalofArrows
CategoryTheory.Presieve.category
arrows
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma.hom
ofArrows_category'
generate_sieve
ofArrows_category' 📖mathematicalofArrows
CategoryTheory.Presieve.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma.hom
generate
le_antisymm
generate_le_iff
CategoryTheory.Category.id_comp
ofArrows_eq_ofObjects 📖mathematicalofArrows
ofObjects
le_antisymm
ofArrows_le_ofObjects
mem_ofArrows_iff
mem_ofObjects_iff
CategoryTheory.Limits.IsTerminal.hom_ext
ofArrows_eq_pullback_of_isPullback 📖mathematicalCategoryTheory.IsPullbackofArrows
pullback
le_antisymm
ofArrows.eq_1
generate_le_iff
CategoryTheory.CommSq.w
CategoryTheory.IsPullback.toCommSq
CategoryTheory.IsPullback.lift_fst
ofArrows_le_ofObjects 📖mathematicalCategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
ofArrows
ofObjects
mem_ofArrows_iff
ofArrows_mk 📖mathematicalarrows
ofArrows
CategoryTheory.Category.id_comp
ofObjects_mono 📖mathematicalSet
Set.instHasSubset
Set.range
CategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
ofObjects
pullbackArrows_comm 📖mathematicalgenerate
CategoryTheory.Presieve.pullbackArrows
pullback
ext
CategoryTheory.Presieve.hasPullback
pullback_apply
CategoryTheory.Category.assoc
CategoryTheory.Limits.pullback.condition
downward_closed
le_generate
CategoryTheory.Limits.pullback.lift_snd
pullback_apply 📖mathematicalarrows
pullback
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pullback_comp 📖mathematicalpullback
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.assoc
pullback_eq_top_of_mem 📖mathematicalarrowspullback
Top.top
CategoryTheory.Sieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
mem_iff_pullback_eq_top
pullback_functorPushforward_equivalence_eq 📖mathematicalpullback
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unit
functorPushforward
ext
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Equivalence.functor_unit_comp
CategoryTheory.Category.comp_id
CategoryTheory.Equivalence.inv_fun_map
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.NatIso.inv_app_isIso
pullback_id 📖mathematicalpullback
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.comp_id
pullback_inter 📖mathematicalpullback
CategoryTheory.Sieve
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
instCompleteLattice
pullback_monotone 📖mathematicalMonotone
CategoryTheory.Sieve
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
pullback
GaloisConnection.monotone_u
galoisConnection
pullback_ofArrows_of_iso 📖mathematicalpullback
CategoryTheory.Iso.hom
ofArrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
ext_iff
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id
pullback_ofObjects 📖mathematicalpullback
ofObjects
ext
pullback_ofObjects_eq_top 📖mathematicalofObjects
Top.top
CategoryTheory.Sieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
ext
mem_ofObjects_iff
pullback_pushforward_le 📖mathematicalCategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
pushforward
pullback
GaloisConnection.l_u_le
galoisConnection
pullback_top 📖mathematicalpullback
Top.top
CategoryTheory.Sieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
top_unique
pushforward_apply 📖mathematicalarrows
pushforward
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
pushforward_apply_comp 📖mathematicalarrowspushforward
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
pushforward_comp 📖mathematicalpushforward
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
ext
CategoryTheory.Category.assoc
pushforward_le_bind_of_mem 📖mathematicalCategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
pushforward
bind
pushforward_monotone 📖mathematicalMonotone
CategoryTheory.Sieve
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
pushforward
GaloisConnection.monotone_l
galoisConnection
pushforward_union 📖mathematicalpushforward
CategoryTheory.Sieve
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
GaloisConnection.l_sup
galoisConnection
sInf_apply 📖mathematicalarrows
InfSet.sInf
CategoryTheory.Sieve
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
sSup_apply 📖mathematicalarrows
SupSet.sSup
CategoryTheory.Sieve
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
sieveOfSubfunctor_apply 📖mathematicalarrows
sieveOfSubfunctor
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.NatTrans.app
sieveOfSubfunctor_functorInclusion 📖mathematicalsieveOfSubfunctor
functor
functorInclusion
ext
sieveOfUliftSubfunctor_apply 📖mathematicalarrows
sieveOfUliftSubfunctor
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.NatTrans.app
CategoryTheory.yoneda
sieveOfUliftSubfunctor_uliftFunctorInclusion 📖mathematicalsieveOfUliftSubfunctor
uliftFunctor
uliftFunctorInclusion
ext
toFunctor_app_coe 📖mathematicalarrowsQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
functor
toFunctor
CategoryTheory.CategoryStruct.comp
toUliftFunctor_app_down_coe 📖mathematicalarrowsQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
functor
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
uliftFunctor
toUliftFunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.yoneda
top_apply 📖mathematicalarrows
Top.top
CategoryTheory.Sieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
uliftFunctorInclusion_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
uliftFunctor
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
uliftFunctorInclusion
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
arrows
uliftFunctorInclusion_is_mono 📖mathematicalCategoryTheory.Mono
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
uliftFunctor
CategoryTheory.Functor.obj
CategoryTheory.uliftYoneda
uliftFunctorInclusion
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
ULift.ext
CategoryTheory.NatTrans.congr_app
uliftFunctorInclusion_top_isIso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
uliftFunctor
Top.top
CategoryTheory.Sieve
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Functor.obj
CategoryTheory.uliftYoneda
uliftFunctorInclusion
uliftNatTransOfLe_app_down_coe 📖mathematicalCategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
arrows
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
functor
CategoryTheory.NatTrans.app
uliftFunctor
uliftNatTransOfLe
uliftNatTransOfLe_comm 📖mathematicalCategoryTheory.Sieve
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
instCompleteLattice
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
uliftFunctor
CategoryTheory.Functor.obj
CategoryTheory.uliftYoneda
uliftNatTransOfLe
uliftFunctorInclusion
union_apply 📖mathematicalarrows
CategoryTheory.Sieve
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice

CategoryTheory.Sieve.ofArrows

Definitions

NameCategoryTheorems
h 📖CompOp
3 mathmath: fac, CategoryTheory.Presieve.bind_ofArrows_le_bindOfArrows, fac_assoc
i 📖CompOp
3 mathmath: fac, CategoryTheory.Presieve.bind_ofArrows_le_bindOfArrows, fac_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
exists 📖mathematicalCategoryTheory.Sieve.arrows
CategoryTheory.Sieve.ofArrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
fac 📖mathematicalCategoryTheory.Sieve.arrows
CategoryTheory.Sieve.ofArrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
i
h
exists
fac_assoc 📖mathematicalCategoryTheory.Sieve.arrows
CategoryTheory.Sieve.ofArrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
i
h
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac

---

← Back to Index