Documentation Verification Report

Subcanonical

📁 Source: Mathlib/CategoryTheory/Sites/Subcanonical.lean

Statistics

MetricCount
DefinitionsSubcanonical, isColimitCofanMkYoneda, uliftYonedaEquiv, uliftYonedaOpCompCoyoneda, yonedaEquiv, yonedaOpCompCoyoneda, yonedaULiftEquiv
7
Theoremshom_ext_uliftYoneda, hom_ext_yoneda, hom_ext_yonedaULift, map_uliftYonedaEquiv, map_uliftYonedaEquiv', map_yonedaEquiv, map_yonedaEquiv', map_yonedaULiftEquiv, map_yonedaULiftEquiv', preservesColimitsOfShape_yoneda_of_ofArrows_inj_mem, preservesLimitsOfSize_yoneda, uliftYonedaEquiv_apply, uliftYonedaEquiv_comp, uliftYonedaEquiv_naturality, uliftYonedaEquiv_naturality', uliftYonedaEquiv_symm_app_apply, uliftYonedaEquiv_symm_map, uliftYonedaEquiv_symm_naturality_left, uliftYonedaEquiv_symm_naturality_right, uliftYonedaEquiv_uliftYoneda_map, uliftYonedaOpCompCoyoneda_app_app, uliftYonedaOpCompCoyoneda_hom_app_app_down, uliftYonedaOpCompCoyoneda_inv_app_app, uliftYonedaOpCompCoyoneda_inv_app_app_val_app, yonedaEquiv_apply, yonedaEquiv_comp, yonedaEquiv_naturality, yonedaEquiv_naturality', yonedaEquiv_symm_app_apply, yonedaEquiv_symm_map, yonedaEquiv_symm_naturality_left, yonedaEquiv_symm_naturality_right, yonedaEquiv_yoneda_map, yonedaOpCompCoyoneda_hom_app_app_down, yonedaOpCompCoyoneda_inv_app_app, yonedaULiftEquiv_apply, yonedaULiftEquiv_comp, yonedaULiftEquiv_naturality, yonedaULiftEquiv_naturality', yonedaULiftEquiv_symm_app_apply, yonedaULiftEquiv_symm_map, yonedaULiftEquiv_symm_naturality_left, yonedaULiftEquiv_symm_naturality_right, yonedaULiftEquiv_yonedaULift_map
44
Total51

CategoryTheory.GrothendieckTopology

Definitions

NameCategoryTheorems
Subcanonical 📖CompData
8 mathmath: CategoryTheory.regularTopology.subcanonical, CategoryTheory.extensiveTopology.subcanonical, CategoryTheory.coherentTopology.subcanonical, instSubcanonicalCanonicalTopology, Subcanonical.of_isSheaf_yoneda_obj, CategoryTheory.subcanonical_typesGrothendieckTopology, TopCat.subcanonical_grothendieckTopology, AlgebraicGeometry.Scheme.subcanonical_zariskiTopology
isColimitCofanMkYoneda 📖CompOp
uliftYonedaEquiv 📖CompOp
24 mathmath: yonedaULiftEquiv_apply, uliftYonedaEquiv_naturality, uliftYonedaEquiv_naturality', uliftYonedaEquiv_symm_map, yonedaULiftEquiv_naturality', yonedaULiftEquiv_symm_naturality_left, yonedaULiftEquiv_symm_naturality_right, uliftYonedaEquiv_uliftYoneda_map, uliftYonedaEquiv_symm_app_apply, map_uliftYonedaEquiv', map_yonedaULiftEquiv', uliftYonedaEquiv_apply, uliftYonedaEquiv_symm_naturality_left, uliftYonedaOpCompCoyoneda_app_app, yonedaULiftEquiv_naturality, map_uliftYonedaEquiv, uliftYonedaOpCompCoyoneda_inv_app_app, yonedaULiftEquiv_comp, yonedaULiftEquiv_symm_app_apply, yonedaULiftEquiv_symm_map, uliftYonedaEquiv_symm_naturality_right, yonedaULiftEquiv_yonedaULift_map, map_yonedaULiftEquiv, uliftYonedaEquiv_comp
uliftYonedaOpCompCoyoneda 📖CompOp
4 mathmath: uliftYonedaOpCompCoyoneda_hom_app_app_down, uliftYonedaOpCompCoyoneda_app_app, uliftYonedaOpCompCoyoneda_inv_app_app, uliftYonedaOpCompCoyoneda_inv_app_app_val_app
yonedaEquiv 📖CompOp
13 mathmath: LightCondensed.ihomPoints_apply, yonedaEquiv_symm_app_apply, yonedaEquiv_naturality', map_yonedaEquiv', yonedaEquiv_comp, yonedaEquiv_symm_map, yonedaEquiv_naturality, LightCondensed.ihomPoints_symm_apply, yonedaEquiv_symm_naturality_left, map_yonedaEquiv, yonedaEquiv_yoneda_map, yonedaEquiv_apply, yonedaEquiv_symm_naturality_right
yonedaOpCompCoyoneda 📖CompOp
2 mathmath: yonedaOpCompCoyoneda_hom_app_app_down, yonedaOpCompCoyoneda_inv_app_app
yonedaULiftEquiv 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext_uliftYoneda 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
CategoryTheory.Sheaf.hom_ext
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
Equiv.apply_symm_apply
hom_ext_yoneda 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
yoneda
CategoryTheory.Sheaf.hom_ext
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
Equiv.apply_symm_apply
hom_ext_yonedaULift 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
hom_ext_uliftYoneda
map_uliftYonedaEquiv 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
EquivLike.toFunLike
Equiv.instEquivLike
uliftYonedaEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
yoneda
uliftYonedaEquiv_naturality
uliftYonedaEquiv_comp
uliftYonedaEquiv_uliftYoneda_map
map_uliftYonedaEquiv' 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
Opposite.unop
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
uliftYonedaEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
yoneda
Quiver.Hom.unop
uliftYonedaEquiv_naturality'
uliftYonedaEquiv_comp
uliftYonedaEquiv_uliftYoneda_map
map_yonedaEquiv 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
yoneda
EquivLike.toFunLike
Equiv.instEquivLike
yonedaEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
yonedaEquiv_naturality
yonedaEquiv_comp
yonedaEquiv_yoneda_map
map_yonedaEquiv' 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
yoneda
Opposite.unop
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
yonedaEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
Quiver.Hom.unop
yonedaEquiv_naturality'
yonedaEquiv_comp
yonedaEquiv_yoneda_map
map_yonedaULiftEquiv 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
EquivLike.toFunLike
Equiv.instEquivLike
uliftYonedaEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
yoneda
map_uliftYonedaEquiv
map_yonedaULiftEquiv' 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
Opposite.unop
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
uliftYonedaEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
yoneda
Quiver.Hom.unop
map_uliftYonedaEquiv'
preservesColimitsOfShape_yoneda_of_ofArrows_inj_mem 📖mathematicalCategoryTheory.Sieve
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
instDFunLikeSetSieve
CategoryTheory.Sieve.ofArrows
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.Sieve.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Sheaf.instCategorySheaf
yoneda
CategoryTheory.Limits.preservesColimitsOfShape_of_discrete
CategoryTheory.Mono.of_coproductDisjoint
CategoryTheory.Limits.CoproductsOfShapeDisjoint.coproductDisjoint
CategoryTheory.Presieve.instHasPullbackOfHasPairwisePullbacksOfArrows
CategoryTheory.Presieve.instHasPairwisePullbacksOfHasPullbacks
preservesLimitsOfSize_yoneda 📖mathematicalCategoryTheory.Limits.PreservesLimitsOfSize
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Sheaf.instCategorySheaf
yoneda
CategoryTheory.Limits.PreservesLimitsOfSize.preservesLimitsOfShape
CategoryTheory.yonedaFunctor_preservesLimits
CategoryTheory.Limits.preservesLimitsOfShape_of_reflects_of_preserves
CategoryTheory.Limits.reflectsLimitsOfShape_of_reflectsLimits
CategoryTheory.Limits.fullyFaithful_reflectsLimits
CategoryTheory.instFullSheafFunctorOppositeSheafToPresheaf
CategoryTheory.instFaithfulSheafFunctorOppositeSheafToPresheaf
uliftYonedaEquiv_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
uliftYonedaEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
yoneda
CategoryTheory.CategoryStruct.id
uliftYonedaEquiv_comp 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
uliftYonedaEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
uliftYonedaEquiv_naturality 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
EquivLike.toFunLike
Equiv.instEquivLike
uliftYonedaEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
uliftYonedaEquiv_naturality' 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
Opposite.unop
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
uliftYonedaEquiv
CategoryTheory.CategoryStruct.comp
Quiver.Hom.unop
uliftYonedaEquiv_naturality
uliftYonedaEquiv_symm_app_apply 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
uliftYoneda
CategoryTheory.Sheaf.Hom.val
DFunLike.coe
Equiv
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
uliftYonedaEquiv
yoneda
CategoryTheory.Functor.map
Opposite.unop
Quiver.Hom.op
uliftYonedaEquiv_symm_map 📖mathematicalDFunLike.coe
Equiv
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
Opposite.op
Opposite.unop
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
uliftYoneda
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
uliftYonedaEquiv
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.comp
Quiver.Hom.unop
Equiv.surjective
uliftYonedaEquiv_naturality'
Equiv.symm_apply_apply
uliftYonedaEquiv_symm_naturality_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
CategoryTheory.Functor.map
DFunLike.coe
Equiv
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
uliftYonedaEquiv
Quiver.Hom.op
Equiv.injective
Equiv.apply_symm_apply
uliftYonedaEquiv_uliftYoneda_map
uliftYonedaEquiv_symm_naturality_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
DFunLike.coe
Equiv
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
uliftYonedaEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
Equiv.injective
Equiv.apply_symm_apply
uliftYonedaEquiv_uliftYoneda_map 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
uliftYonedaEquiv
CategoryTheory.Functor.map
yoneda
uliftYonedaEquiv_apply
CategoryTheory.Category.id_comp
uliftYonedaOpCompCoyoneda_app_app 📖mathematicalCategoryTheory.Iso.app
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
uliftYoneda
CategoryTheory.coyoneda
CategoryTheory.evaluation
CategoryTheory.Functor.whiskeringRight
CategoryTheory.uliftFunctor
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.sheafToPresheaf
uliftYonedaOpCompCoyoneda
Equiv.toIso
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Sheaf.val
Opposite.op
Equiv.trans
uliftYonedaEquiv
Equiv.symm
Equiv.ulift
uliftYonedaOpCompCoyoneda_hom_app_app_down 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.evaluation
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.sheafToPresheaf
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
yoneda
CategoryTheory.sheafCompose
CategoryTheory.uliftFunctor
CategoryTheory.coyoneda
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Iso.hom
uliftYoneda
uliftYonedaOpCompCoyoneda
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.uliftYoneda
Opposite.unop
CategoryTheory.Sheaf.val
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.uliftYonedaEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Iso.inv
uliftYonedaCompSheafToPresheaf
CategoryTheory.Sheaf.Hom.val
uliftYonedaOpCompCoyoneda_inv_app_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.evaluation
CategoryTheory.Functor.whiskeringRight
CategoryTheory.uliftFunctor
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.sheafToPresheaf
CategoryTheory.Functor.op
uliftYoneda
CategoryTheory.coyoneda
CategoryTheory.Iso.inv
uliftYonedaOpCompCoyoneda
DFunLike.coe
Equiv
CategoryTheory.Sheaf.val
Opposite.op
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
uliftYonedaEquiv
uliftYonedaOpCompCoyoneda_inv_app_app_val_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.unop
CategoryTheory.Functor
Opposite.op
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.category
CategoryTheory.sheafToPresheaf
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
yoneda
CategoryTheory.sheafCompose
CategoryTheory.uliftFunctor
CategoryTheory.Sheaf.Hom.val
CategoryTheory.evaluation
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.coyoneda
CategoryTheory.Iso.inv
uliftYoneda
uliftYonedaOpCompCoyoneda
CategoryTheory.uliftYoneda
CategoryTheory.Sheaf.val
CategoryTheory.uliftYonedaOpCompCoyoneda
yonedaEquiv_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
yoneda
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
yonedaEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
CategoryTheory.CategoryStruct.id
yonedaEquiv_comp 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
yoneda
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
yonedaEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
yonedaEquiv_naturality 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
yoneda
EquivLike.toFunLike
Equiv.instEquivLike
yonedaEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.yonedaEquiv_naturality
EquivLike.toEmbeddingLike
yonedaEquiv_naturality' 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
yoneda
Opposite.unop
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
yonedaEquiv
CategoryTheory.CategoryStruct.comp
Quiver.Hom.unop
yonedaEquiv_naturality
yonedaEquiv_symm_app_apply 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
yoneda
CategoryTheory.Sheaf.Hom.val
DFunLike.coe
Equiv
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
yonedaEquiv
CategoryTheory.Functor.map
Opposite.unop
Quiver.Hom.op
yonedaEquiv_symm_map 📖mathematicalDFunLike.coe
Equiv
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
Opposite.op
Opposite.unop
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
yoneda
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
yonedaEquiv
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.comp
Quiver.Hom.unop
Equiv.surjective
yonedaEquiv_naturality'
Equiv.symm_apply_apply
yonedaEquiv_symm_naturality_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
yoneda
CategoryTheory.Functor.map
DFunLike.coe
Equiv
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
yonedaEquiv
Quiver.Hom.op
Equiv.injective
Equiv.apply_symm_apply
yonedaEquiv_yoneda_map
yonedaEquiv_symm_naturality_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
yoneda
DFunLike.coe
Equiv
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
yonedaEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
Equiv.injective
Equiv.apply_symm_apply
yonedaEquiv_yoneda_map 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
yoneda
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
yonedaEquiv
CategoryTheory.Functor.map
yonedaEquiv_apply
CategoryTheory.Category.id_comp
yonedaOpCompCoyoneda_hom_app_app_down 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.evaluation
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.sheafToPresheaf
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
yoneda
CategoryTheory.coyoneda
CategoryTheory.Functor.whiskeringRight
CategoryTheory.uliftFunctor
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Iso.hom
yonedaOpCompCoyoneda
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.yoneda
Opposite.unop
CategoryTheory.Sheaf.val
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.yonedaEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Iso.inv
yonedaCompSheafToPresheaf
CategoryTheory.Sheaf.Hom.val
yonedaOpCompCoyoneda_inv_app_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.evaluation
CategoryTheory.Functor.whiskeringRight
CategoryTheory.uliftFunctor
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.sheafToPresheaf
CategoryTheory.Functor.op
yoneda
CategoryTheory.coyoneda
CategoryTheory.Iso.inv
yonedaOpCompCoyoneda
Opposite.op
CategoryTheory.yoneda
Opposite.unop
CategoryTheory.Iso.hom
CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.val
yonedaCompSheafToPresheaf
CategoryTheory.largeCurriedYonedaLemma
yonedaULiftEquiv_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
uliftYonedaEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
yoneda
CategoryTheory.CategoryStruct.id
uliftYonedaEquiv_apply
yonedaULiftEquiv_comp 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
uliftYonedaEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
uliftYonedaEquiv_comp
yonedaULiftEquiv_naturality 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
EquivLike.toFunLike
Equiv.instEquivLike
uliftYonedaEquiv
CategoryTheory.CategoryStruct.comp
uliftYonedaEquiv_naturality
yonedaULiftEquiv_naturality' 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
Opposite.unop
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
uliftYonedaEquiv
CategoryTheory.CategoryStruct.comp
Quiver.Hom.unop
uliftYonedaEquiv_naturality'
yonedaULiftEquiv_symm_app_apply 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
uliftYoneda
CategoryTheory.Sheaf.Hom.val
DFunLike.coe
Equiv
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
uliftYonedaEquiv
yoneda
CategoryTheory.Functor.map
Opposite.unop
Quiver.Hom.op
uliftYonedaEquiv_symm_app_apply
yonedaULiftEquiv_symm_map 📖mathematicalDFunLike.coe
Equiv
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Sheaf.val
Opposite.op
Opposite.unop
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
uliftYoneda
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
uliftYonedaEquiv
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.comp
Quiver.Hom.unop
uliftYonedaEquiv_symm_map
yonedaULiftEquiv_symm_naturality_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
CategoryTheory.Functor.map
DFunLike.coe
Equiv
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
uliftYonedaEquiv
Quiver.Hom.op
uliftYonedaEquiv_symm_naturality_left
yonedaULiftEquiv_symm_naturality_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
DFunLike.coe
Equiv
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
uliftYonedaEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
uliftYonedaEquiv_symm_naturality_right
yonedaULiftEquiv_yonedaULift_map 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Sheaf
CategoryTheory.types
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Functor.obj
uliftYoneda
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Sheaf.val
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
uliftYonedaEquiv
CategoryTheory.Functor.map
yoneda
uliftYonedaEquiv_uliftYoneda_map

---

← Back to Index