Documentation Verification Report

Whiskering

📁 Source: Mathlib/CategoryTheory/Sites/Whiskering.lean

Statistics

MetricCount
DefinitionsmapMultifork, multicospanComp, HasSheafCompose, fullyFaithfulSheafCompose, fullyFaithfulSheafComposeCompSheafToPresheaf, sheafCompose, sheafCompose_map
7
TheoremsmulticospanComp_hom_app, multicospanComp_inv_app, isSheaf, isSeparated, isSeparated, hasSheafCompose_of_preservesLimitsOfSize, hasSheafCompose_of_preservesMulticospan, instFaithfulSheafFunctorOppositeCompSheafComposeSheafToPresheaf, instFaithfulSheafSheafCompose, instFullSheafFunctorOppositeCompSheafComposeSheafToPresheafOfFaithful, instFullSheafSheafComposeOfFaithful, instReflectsIsomorphismsSheafSheafCompose, sheafCompose_comp, sheafCompose_id, sheafCompose_map_val, sheafCompose_obj_val
16
Total23

CategoryTheory

Definitions

NameCategoryTheorems
fullyFaithfulSheafCompose 📖CompOp
fullyFaithfulSheafComposeCompSheafToPresheaf 📖CompOp
sheafCompose 📖CompOp
29 mathmath: instFullSheafSheafComposeOfFaithful, constantCommuteCompose_hom_app_val, sheafCompose_map_val, instIsIsoFunctorOppositeSheafSheafComposeNatTrans, Sheaf.isConstant_iff_forget, GrothendieckTopology.instIsIsoFunctorOppositeSheafSheafComposeNatTransPlusPlusAdjunction, Sheaf.adjunction_counit_app_val, instFaithfulSheafSheafCompose, GrothendieckTopology.sheafToPresheaf_map_sheafComposeNatTrans_eq_sheafifyCompIso_inv, Sheaf.isLocallyInjective_forget, instReflectsIsomorphismsSheafSheafCompose, GrothendieckTopology.preservesSheafification_iff_of_adjunctions_of_hasSheafCompose, Sheaf.adjunction_unit_app_val, instFaithfulSheafFunctorOppositeCompSheafComposeSheafToPresheaf, GrothendieckTopology.uliftYonedaOpCompCoyoneda_hom_app_app_down, Sheaf.instIsLocallySurjectiveHomMapTypeSheafComposeForget, instIsConstantObjSheafSheafCompose, constantSheafAdj_counit_w, sheafCompose_id, instFullSheafFunctorOppositeCompSheafComposeSheafToPresheafOfFaithful, GrothendieckTopology.instIsIsoSheafAppFunctorOppositeSheafComposeNatTransPlusPlusAdjunction, Sheaf.instIsRightAdjointSheafComposeOfHasWeakSheafify, GrothendieckTopology.Point.sheafFiberCompIso_hom_app, GrothendieckTopology.Point.sheafFiberCompIso_inv_app, GrothendieckTopology.uliftYoneda_map_val_app_down, sheafCompose_obj_val, sheafComposeNatTrans_fac, GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app_val_app, sheafCompose_comp
sheafCompose_map 📖CompOp
2 mathmath: sheafCompose_id, sheafCompose_comp

Theorems

NameKindAssumesProvesValidatesDepends On
hasSheafCompose_of_preservesLimitsOfSize 📖mathematicalGrothendieckTopology.HasSheafComposePresheaf.isSheaf_comp_of_isSheaf
hasSheafCompose_of_preservesMulticospan 📖mathematicalLimits.PreservesLimit
Limits.WalkingMulticospan
GrothendieckTopology.Cover.shape
Limits.WalkingMulticospan.instSmallCategory
Limits.MulticospanIndex.multicospan
GrothendieckTopology.Cover.index
GrothendieckTopology.HasSheafComposePresheaf.isSheaf_iff_multifork
instFaithfulSheafFunctorOppositeCompSheafComposeSheafToPresheaf 📖mathematicalFunctor.Faithful
Sheaf
Sheaf.instCategorySheaf
Functor
Opposite
Category.opposite
Functor.category
Functor.comp
sheafCompose
sheafToPresheaf
Functor.Faithful.comp
instFaithfulSheafFunctorOppositeSheafToPresheaf
Functor.faithful_whiskeringRight_obj
instFaithfulSheafSheafCompose 📖mathematicalFunctor.Faithful
Sheaf
Sheaf.instCategorySheaf
sheafCompose
Functor.Faithful.of_comp
instFaithfulSheafFunctorOppositeCompSheafComposeSheafToPresheaf
instFullSheafFunctorOppositeCompSheafComposeSheafToPresheafOfFaithful 📖mathematicalFunctor.Full
Sheaf
Sheaf.instCategorySheaf
Functor
Opposite
Category.opposite
Functor.category
Functor.comp
sheafCompose
sheafToPresheaf
Functor.Full.comp
instFullSheafFunctorOppositeSheafToPresheaf
Functor.full_whiskeringRight_obj
instFullSheafSheafComposeOfFaithful 📖mathematicalFunctor.Full
Sheaf
Sheaf.instCategorySheaf
sheafCompose
Functor.Full.of_comp_faithful
instFullSheafFunctorOppositeCompSheafComposeSheafToPresheafOfFaithful
instFaithfulSheafFunctorOppositeSheafToPresheaf
instReflectsIsomorphismsSheafSheafCompose 📖mathematicalFunctor.ReflectsIsomorphisms
Sheaf
Sheaf.instCategorySheaf
sheafCompose
isIso_iff_of_reflects_iso
instReflectsIsomorphismsSheafFunctorOppositeSheafToPresheaf
instReflectsIsomorphismsFunctorObjWhiskeringRight
Functor.map_isIso
sheafCompose_comp 📖mathematicalsheafCompose_map
CategoryStruct.comp
Functor
Category.toCategoryStruct
Functor.category
Sheaf
Sheaf.instCategorySheaf
sheafCompose
sheafCompose_id 📖mathematicalsheafCompose_map
CategoryStruct.id
Functor
Category.toCategoryStruct
Functor.category
Sheaf
Sheaf.instCategorySheaf
sheafCompose
sheafCompose_map_val 📖mathematicalSheaf.Hom.val
Functor.comp
Opposite
Category.opposite
Sheaf.val
Functor.map
Sheaf
Sheaf.instCategorySheaf
sheafCompose
Functor.whiskerRight
sheafCompose_obj_val 📖mathematicalSheaf.val
Functor.obj
Sheaf
Sheaf.instCategorySheaf
sheafCompose
Functor.comp
Opposite
Category.opposite

CategoryTheory.GrothendieckTopology

Definitions

NameCategoryTheorems
HasSheafCompose 📖CompData
6 mathmath: CategoryTheory.hasSheafComposeEssentiallySmallSite, CategoryTheory.hasSheafCompose_of_preservesMulticospan, CategoryTheory.Presheaf.instHasSheafComposeCoherentTopologyOfProjectiveOfPreservesFiniteProducts, CategoryTheory.Presheaf.instHasSheafComposeCoherentTopologyOfForallEffectiveEpiHasPullbackOfPreservesFiniteLimits, CategoryTheory.hasSheafCompose_of_preservesLimitsOfSize, CategoryTheory.Equivalence.hasSheafCompose

CategoryTheory.GrothendieckTopology.Cover

Definitions

NameCategoryTheorems
mapMultifork 📖CompOp
multicospanComp 📖CompOp
2 mathmath: multicospanComp_inv_app, multicospanComp_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
multicospanComp_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingMulticospan
shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.MulticospanIndex.multicospan
index
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
multicospanComp
CategoryTheory.Functor.obj
Opposite.op
Arrow.Y
Arrow.Relation.Z
Relation.fst
Relation.snd
Relation.r
CategoryTheory.Iso
CategoryTheory.Iso.refl
multicospanComp_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingMulticospan
shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Functor.comp
CategoryTheory.Limits.MulticospanIndex.multicospan
index
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
multicospanComp
CategoryTheory.Functor.obj
Opposite.op
Arrow.Y
Arrow.Relation.Z
Relation.fst
Relation.snd
Relation.r
CategoryTheory.Iso
CategoryTheory.Iso.refl

CategoryTheory.GrothendieckTopology.HasSheafCompose

Theorems

NameKindAssumesProvesValidatesDepends On
isSheaf 📖mathematicalCategoryTheory.Presheaf.IsSheafCategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite

CategoryTheory.Presheaf.IsSheaf

Theorems

NameKindAssumesProvesValidatesDepends On
isSeparated 📖mathematicalCategoryTheory.Presheaf.IsSheafCategoryTheory.Presheaf.IsSeparatedCategoryTheory.Sheaf.isSeparated

CategoryTheory.Sheaf

Theorems

NameKindAssumesProvesValidatesDepends On
isSeparated 📖mathematicalCategoryTheory.Presheaf.IsSeparated
val
CategoryTheory.Presieve.IsSeparatedFor.ext
CategoryTheory.Presieve.IsSheaf.isSeparated
CategoryTheory.isSheaf_iff_isSheaf_of_type
cond

---

← Back to Index