Documentation Verification Report

Skeletal

πŸ“ Source: Mathlib/CategoryTheory/Skeletal.lean

Statistics

MetricCount
DefinitionsskeletonEquiv, thinSkeletonOrderIso, mapSkeleton, toSkeletonFunctorCompMapSkeletonIso, IsSkeletonOf, Skeletal, isoOfEq, ThinSkeleton, equivalence, fromThinSkeleton, fromThinSkeletonCompToThinSkeletonIso, isSkeletonOfInhabited, lowerAdjunction, map, mapCompFromThinSkeletonIso, mapNatTrans, mapβ‚‚, mapβ‚‚Functor, mapβ‚‚NatTrans, mapβ‚‚ObjMap, mk, preorder, thinSkeletonPartialOrder, fromSkeleton, fromSkeletonToSkeletonIso, inhabitedThinSkeleton, instCategorySkeleton, instCoeSortSkeleton, instInhabitedSkeleton, preCounitIso, skeletonEquivalence, toSkeleton, toSkeletonFunctor, toThinSkeleton
34
Theoremseq_of_iso, instEssSurjSkeletonMapSkeleton, instFaithfulSkeletonMapSkeleton, instFullSkeletonMapSkeleton, mapSkeleton_injective, mapSkeleton_obj_toSkeleton, mapSkeleton_surjective, eqv, skel, comp_hom, comp_hom_assoc, comp_toThinSkeleton, equiv_of_both_ways, fromThinSkeleton_isEquivalence, fromThinSkeleton_map, fromThinSkeleton_obj, map_comp_eq, map_id_eq, map_iso_eq, map_map, map_obj, mapβ‚‚_map, mapβ‚‚_obj, skeletal, thin, thinSkeleton_isSkeleton, toThinSkeleton_faithful, congr_toSkeleton_of_iso, isEquivalence, fromSkeleton_map, fromSkeleton_obj, functor_skeletal, instEssSurjSkeletonFromSkeleton, instFaithfulSkeletonFromSkeleton, instFullSkeletonFromSkeleton, skeletonEquivalence_counitIso, skeletonEquivalence_functor, skeletonEquivalence_inverse, skeletonEquivalence_unitIso, skeleton_isSkeleton, skeleton_skeletal, toSkeletonFunctor_map_hom, toSkeletonFunctor_obj, toSkeleton_eq_iff, toSkeleton_eq_toSkeleton_iff, toSkeleton_fromSkeleton_obj, toThinSkeleton_map, toThinSkeleton_obj
48
Total82

CategoryTheory

Definitions

NameCategoryTheorems
IsSkeletonOf πŸ“–CompData
4 mathmath: SimplexCategory.isSkeletonOf, FintypeCat.isSkeleton, ThinSkeleton.thinSkeleton_isSkeleton, skeleton_isSkeleton
Skeletal πŸ“–MathDef
6 mathmath: SimplexCategory.skeletal, IsSkeletonOf.skel, skeleton_skeletal, FintypeCat.Skeleton.is_skeletal, ThinSkeleton.skeletal, Subobject.skeletal
ThinSkeleton πŸ“–CompOp
21 mathmath: Limits.hasLimitsOfSize_thinSkeleton, Limits.hasColimitsOfShape_thinSkeleton, ThinSkeleton.map_map, ThinSkeleton.fromThinSkeleton_isEquivalence, ThinSkeleton.map_obj, ThinSkeleton.fromThinSkeleton_map, Limits.hasColimitsOfSize_thinSkeleton, ThinSkeleton.fromThinSkeleton_obj, ThinSkeleton.thin, ThinSkeleton.mapβ‚‚_obj, Limits.hasLimitsOfShape_thinSkeleton, toThinSkeleton_map, Subobject.lower_comm, ThinSkeleton.thinSkeleton_isSkeleton, ThinSkeleton.map_id_eq, ThinSkeleton.mapβ‚‚_map, ThinSkeleton.skeletal, toThinSkeleton_obj, ThinSkeleton.map_comp_eq, ThinSkeleton.comp_toThinSkeleton, ThinSkeleton.toThinSkeleton_faithful
fromSkeleton πŸ“–CompOp
13 mathmath: fromSkeleton.isEquivalence, skeletonEquivalence_unitIso, toSkeleton_eq_iff, toSkeleton_fromSkeleton_obj, instEssSurjSkeletonFromSkeleton, skeletonEquivalence_counitIso, fromSkeleton_obj, fromSkeleton_map, instFaithfulSkeletonFromSkeleton, instFullSkeletonFromSkeleton, toSkeletonFunctor_map_hom, skeleton_isSkeleton, skeletonEquivalence_functor
fromSkeletonToSkeletonIso πŸ“–CompOp
2 mathmath: skeletonEquivalence_counitIso, toSkeletonFunctor_map_hom
inhabitedThinSkeleton πŸ“–CompOpβ€”
instCategorySkeleton πŸ“–CompOp
28 mathmath: Limits.hasColimitsOfShape_skeleton, Limits.hasLimitsOfSize_skeleton, fromSkeleton.isEquivalence, skeletonEquivalence_unitIso, skeletonEquivalence_inverse, toSkeleton_eq_iff, Functor.mapSkeleton_obj_toSkeleton, Functor.instFaithfulSkeletonMapSkeleton, toSkeleton_fromSkeleton_obj, instEssSurjSkeletonFromSkeleton, skeleton_skeletal, skeletonEquivalence_counitIso, fromSkeleton_obj, Limits.hasLimitsOfShape_skeleton, fromSkeleton_map, instFaithfulSkeletonFromSkeleton, instFullSkeletonFromSkeleton, Functor.instFullSkeletonMapSkeleton, Skeleton.comp_hom, toSkeletonFunctor_map_hom, Functor.instEssSurjSkeletonMapSkeleton, toSkeletonFunctor_obj, skeleton_isSkeleton, skeletonEquivalence_functor, Functor.mapSkeleton_injective, Limits.hasColimitsOfSize_skeleton, Functor.mapSkeleton_surjective, Skeleton.comp_hom_assoc
instCoeSortSkeleton πŸ“–CompOpβ€”
instInhabitedSkeleton πŸ“–CompOpβ€”
preCounitIso πŸ“–CompOpβ€”
skeletonEquivalence πŸ“–CompOp
4 mathmath: skeletonEquivalence_unitIso, skeletonEquivalence_inverse, skeletonEquivalence_counitIso, skeletonEquivalence_functor
toSkeleton πŸ“–CompOp
10 mathmath: congr_toSkeleton_of_iso, Skeleton.toSkeleton_tensorObj, toSkeleton_eq_iff, Skeleton.one_eq, Functor.mapSkeleton_obj_toSkeleton, toSkeleton_fromSkeleton_obj, toSkeletonFunctor_map_hom, toSkeletonFunctor_obj, Skeleton.mul_eq, toSkeleton_eq_toSkeleton_iff
toSkeletonFunctor πŸ“–CompOp
5 mathmath: skeletonEquivalence_unitIso, skeletonEquivalence_inverse, skeletonEquivalence_counitIso, toSkeletonFunctor_map_hom, toSkeletonFunctor_obj
toThinSkeleton πŸ“–CompOp
5 mathmath: toThinSkeleton_map, Subobject.lower_comm, toThinSkeleton_obj, ThinSkeleton.comp_toThinSkeleton, ThinSkeleton.toThinSkeleton_faithful

Theorems

NameKindAssumesProvesValidatesDepends On
congr_toSkeleton_of_iso πŸ“–mathematicalβ€”toSkeletonβ€”β€”
fromSkeleton_map πŸ“–mathematicalβ€”Functor.map
Skeleton
instCategorySkeleton
fromSkeleton
InducedCategory.Hom.hom
isIsomorphicSetoid
Quotient.out
β€”β€”
fromSkeleton_obj πŸ“–mathematicalβ€”Functor.obj
Skeleton
instCategorySkeleton
fromSkeleton
Quotient.out
isIsomorphicSetoid
β€”β€”
functor_skeletal πŸ“–mathematicalQuiver.IsThin
CategoryStruct.toQuiver
Category.toCategoryStruct
Skeletal
Functor
Functor.category
β€”Functor.eq_of_iso
instEssSurjSkeletonFromSkeleton πŸ“–mathematicalβ€”Functor.EssSurj
Skeleton
instCategorySkeleton
fromSkeleton
β€”Quotient.mk_out
instFaithfulSkeletonFromSkeleton πŸ“–mathematicalβ€”Functor.Faithful
Skeleton
instCategorySkeleton
fromSkeleton
β€”InducedCategory.faithful
instFullSkeletonFromSkeleton πŸ“–mathematicalβ€”Functor.Full
Skeleton
instCategorySkeleton
fromSkeleton
β€”InducedCategory.full
skeletonEquivalence_counitIso πŸ“–mathematicalβ€”Equivalence.counitIso
Skeleton
instCategorySkeleton
skeletonEquivalence
NatIso.ofComponents
Functor.comp
toSkeletonFunctor
fromSkeleton
Functor.id
fromSkeletonToSkeletonIso
β€”β€”
skeletonEquivalence_functor πŸ“–mathematicalβ€”Equivalence.functor
Skeleton
instCategorySkeleton
skeletonEquivalence
fromSkeleton
β€”β€”
skeletonEquivalence_inverse πŸ“–mathematicalβ€”Equivalence.inverse
Skeleton
instCategorySkeleton
skeletonEquivalence
toSkeletonFunctor
β€”β€”
skeletonEquivalence_unitIso πŸ“–mathematicalβ€”Equivalence.unitIso
Skeleton
instCategorySkeleton
skeletonEquivalence
NatIso.ofComponents
Functor.id
Functor.comp
fromSkeleton
toSkeletonFunctor
InducedCategory.isoMk
isIsomorphicSetoid
Quotient.out
Functor.obj
Iso.symm
Nonempty.some
Iso
β€”β€”
skeleton_isSkeleton πŸ“–mathematicalβ€”IsSkeletonOf
Skeleton
instCategorySkeleton
fromSkeleton
β€”skeleton_skeletal
fromSkeleton.isEquivalence
skeleton_skeletal πŸ“–mathematicalβ€”Skeletal
Skeleton
instCategorySkeleton
β€”Quotient.out_eq
toSkeletonFunctor_map_hom πŸ“–mathematicalβ€”InducedCategory.Hom.hom
isIsomorphicSetoid
Quotient.out
toSkeleton
Functor.map
Skeleton
instCategorySkeleton
toSkeletonFunctor
CategoryStruct.comp
Category.toCategoryStruct
Iso.hom
Functor.obj
fromSkeleton
fromSkeletonToSkeletonIso
Iso.inv
β€”β€”
toSkeletonFunctor_obj πŸ“–mathematicalβ€”Functor.obj
Skeleton
instCategorySkeleton
toSkeletonFunctor
toSkeleton
β€”β€”
toSkeleton_eq_iff πŸ“–mathematicalβ€”toSkeleton
Iso
Functor.obj
Skeleton
instCategorySkeleton
fromSkeleton
β€”Quotient.mk_eq_iff_out
toSkeleton_eq_toSkeleton_iff πŸ“–mathematicalβ€”toSkeleton
Iso
β€”Quotient.eq
toSkeleton_fromSkeleton_obj πŸ“–mathematicalβ€”toSkeleton
Functor.obj
Skeleton
instCategorySkeleton
fromSkeleton
β€”Quotient.out_eq
toThinSkeleton_map πŸ“–mathematicalβ€”Functor.map
ThinSkeleton
Preorder.smallCategory
ThinSkeleton.preorder
toThinSkeleton
homOfLE
β€”β€”
toThinSkeleton_obj πŸ“–mathematicalβ€”Functor.obj
ThinSkeleton
Preorder.smallCategory
ThinSkeleton.preorder
toThinSkeleton
β€”β€”

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
skeletonEquiv πŸ“–CompOpβ€”
thinSkeletonOrderIso πŸ“–CompOpβ€”

CategoryTheory.Functor

Definitions

NameCategoryTheorems
mapSkeleton πŸ“–CompOp
6 mathmath: mapSkeleton_obj_toSkeleton, instFaithfulSkeletonMapSkeleton, instFullSkeletonMapSkeleton, instEssSurjSkeletonMapSkeleton, mapSkeleton_injective, mapSkeleton_surjective
toSkeletonFunctorCompMapSkeletonIso πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_iso πŸ“–β€”Quiver.IsThin
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Skeletal
β€”β€”ext
instEssSurjSkeletonMapSkeleton πŸ“–mathematicalβ€”EssSurj
CategoryTheory.Skeleton
CategoryTheory.instCategorySkeleton
mapSkeleton
β€”essSurj_comp
CategoryTheory.Equivalence.essSurj_functor
CategoryTheory.Equivalence.essSurj_inverse
instFaithfulSkeletonMapSkeleton πŸ“–mathematicalβ€”Faithful
CategoryTheory.Skeleton
CategoryTheory.instCategorySkeleton
mapSkeleton
β€”Faithful.comp
CategoryTheory.Equivalence.faithful_functor
CategoryTheory.Equivalence.faithful_inverse
instFullSkeletonMapSkeleton πŸ“–mathematicalβ€”Full
CategoryTheory.Skeleton
CategoryTheory.instCategorySkeleton
mapSkeleton
β€”Full.comp
CategoryTheory.Equivalence.full_functor
CategoryTheory.Equivalence.full_inverse
mapSkeleton_injective πŸ“–mathematicalβ€”CategoryTheory.Skeleton
obj
CategoryTheory.instCategorySkeleton
mapSkeleton
β€”CategoryTheory.skeleton_skeletal
instFullSkeletonMapSkeleton
instFaithfulSkeletonMapSkeleton
mapSkeleton_obj_toSkeleton πŸ“–mathematicalβ€”obj
CategoryTheory.Skeleton
CategoryTheory.instCategorySkeleton
mapSkeleton
CategoryTheory.toSkeleton
β€”CategoryTheory.congr_toSkeleton_of_iso
mapSkeleton_surjective πŸ“–mathematicalβ€”CategoryTheory.Skeleton
obj
CategoryTheory.instCategorySkeleton
mapSkeleton
β€”EssSurj.mem_essImage
instEssSurjSkeletonMapSkeleton
CategoryTheory.skeleton_skeletal

CategoryTheory.IsSkeletonOf

Theorems

NameKindAssumesProvesValidatesDepends On
eqv πŸ“–mathematicalCategoryTheory.IsSkeletonOfCategoryTheory.Functor.IsEquivalenceβ€”β€”
skel πŸ“–mathematicalCategoryTheory.IsSkeletonOfCategoryTheory.Skeletalβ€”β€”

CategoryTheory.Skeleton

Definitions

NameCategoryTheorems
isoOfEq πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
comp_hom πŸ“–mathematicalβ€”CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.isIsomorphicSetoid
Quotient.out
CategoryTheory.CategoryStruct.comp
CategoryTheory.Skeleton
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategorySkeleton
β€”β€”
comp_hom_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quotient.out
CategoryTheory.isIsomorphicSetoid
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.Skeleton
CategoryTheory.instCategorySkeleton
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_hom

CategoryTheory.ThinSkeleton

Definitions

NameCategoryTheorems
equivalence πŸ“–CompOpβ€”
fromThinSkeleton πŸ“–CompOp
4 mathmath: fromThinSkeleton_isEquivalence, fromThinSkeleton_map, fromThinSkeleton_obj, thinSkeleton_isSkeleton
fromThinSkeletonCompToThinSkeletonIso πŸ“–CompOpβ€”
isSkeletonOfInhabited πŸ“–CompOpβ€”
lowerAdjunction πŸ“–CompOpβ€”
map πŸ“–CompOp
6 mathmath: map_map, map_obj, map_iso_eq, map_id_eq, map_comp_eq, comp_toThinSkeleton
mapCompFromThinSkeletonIso πŸ“–CompOpβ€”
mapNatTrans πŸ“–CompOpβ€”
mapβ‚‚ πŸ“–CompOp
2 mathmath: mapβ‚‚_obj, mapβ‚‚_map
mapβ‚‚Functor πŸ“–CompOp
1 mathmath: mapβ‚‚_obj
mapβ‚‚NatTrans πŸ“–CompOp
1 mathmath: mapβ‚‚_map
mapβ‚‚ObjMap πŸ“–CompOpβ€”
mk πŸ“–CompOpβ€”
preorder πŸ“–CompOp
21 mathmath: CategoryTheory.Limits.hasLimitsOfSize_thinSkeleton, CategoryTheory.Limits.hasColimitsOfShape_thinSkeleton, map_map, fromThinSkeleton_isEquivalence, map_obj, fromThinSkeleton_map, CategoryTheory.Limits.hasColimitsOfSize_thinSkeleton, fromThinSkeleton_obj, thin, mapβ‚‚_obj, CategoryTheory.Limits.hasLimitsOfShape_thinSkeleton, CategoryTheory.toThinSkeleton_map, CategoryTheory.Subobject.lower_comm, thinSkeleton_isSkeleton, map_id_eq, mapβ‚‚_map, skeletal, CategoryTheory.toThinSkeleton_obj, map_comp_eq, comp_toThinSkeleton, toThinSkeleton_faithful
thinSkeletonPartialOrder πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
comp_toThinSkeleton πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
CategoryTheory.ThinSkeleton
Preorder.smallCategory
preorder
CategoryTheory.toThinSkeleton
map
β€”β€”
equiv_of_both_ways πŸ“–mathematicalQuiver.IsThin
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.isIsomorphicSetoidβ€”β€”
fromThinSkeleton_isEquivalence πŸ“–mathematicalQuiver.IsThin
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.IsEquivalence
CategoryTheory.ThinSkeleton
Preorder.smallCategory
preorder
fromThinSkeleton
β€”CategoryTheory.Equivalence.isEquivalence_functor
fromThinSkeleton_map πŸ“–mathematicalQuiver.IsThin
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.ThinSkeleton
Preorder.smallCategory
preorder
fromThinSkeleton
CategoryTheory.isIsomorphicSetoid
CategoryTheory.CategoryStruct.comp
Quotient.out
CategoryTheory.Iso.hom
Nonempty.some
CategoryTheory.Iso
Quiver.Hom
CategoryTheory.Iso.inv
β€”β€”
fromThinSkeleton_obj πŸ“–mathematicalQuiver.IsThin
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ThinSkeleton
Preorder.smallCategory
preorder
fromThinSkeleton
Quotient.out
CategoryTheory.isIsomorphicSetoid
β€”β€”
map_comp_eq πŸ“–mathematicalQuiver.IsThin
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
map
CategoryTheory.Functor.comp
CategoryTheory.ThinSkeleton
Preorder.smallCategory
preorder
β€”CategoryTheory.Functor.eq_of_iso
thin
skeletal
CategoryTheory.subsingleton_iso
map_id_eq πŸ“–mathematicalQuiver.IsThin
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
map
CategoryTheory.Functor.id
CategoryTheory.ThinSkeleton
Preorder.smallCategory
preorder
β€”CategoryTheory.Functor.eq_of_iso
thin
skeletal
CategoryTheory.subsingleton_iso
map_iso_eq πŸ“–mathematicalQuiver.IsThin
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
mapβ€”CategoryTheory.Functor.eq_of_iso
thin
skeletal
map_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.ThinSkeleton
Preorder.smallCategory
preorder
map
CategoryTheory.isIsomorphicSetoid
CategoryTheory.homOfLE
Quotient.map
CategoryTheory.Functor.obj
β€”β€”
map_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.ThinSkeleton
Preorder.smallCategory
preorder
map
Quotient.map
CategoryTheory.isIsomorphicSetoid
β€”β€”
mapβ‚‚_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.ThinSkeleton
Preorder.smallCategory
preorder
CategoryTheory.Functor
CategoryTheory.Functor.category
mapβ‚‚
mapβ‚‚NatTrans
β€”β€”
mapβ‚‚_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.ThinSkeleton
Preorder.smallCategory
preorder
CategoryTheory.Functor
CategoryTheory.Functor.category
mapβ‚‚
mapβ‚‚Functor
β€”β€”
skeletal πŸ“–mathematicalQuiver.IsThin
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Skeletal
CategoryTheory.ThinSkeleton
Preorder.smallCategory
preorder
β€”LE.le.antisymm
thin πŸ“–mathematicalβ€”Quiver.IsThin
CategoryTheory.ThinSkeleton
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Preorder.smallCategory
preorder
β€”β€”
thinSkeleton_isSkeleton πŸ“–mathematicalQuiver.IsThin
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsSkeletonOf
CategoryTheory.ThinSkeleton
Preorder.smallCategory
preorder
fromThinSkeleton
β€”skeletal
fromThinSkeleton_isEquivalence
toThinSkeleton_faithful πŸ“–mathematicalQuiver.IsThin
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.Faithful
CategoryTheory.ThinSkeleton
Preorder.smallCategory
preorder
CategoryTheory.toThinSkeleton
β€”β€”

CategoryTheory.fromSkeleton

Theorems

NameKindAssumesProvesValidatesDepends On
isEquivalence πŸ“–mathematicalβ€”CategoryTheory.Functor.IsEquivalence
CategoryTheory.Skeleton
CategoryTheory.instCategorySkeleton
CategoryTheory.fromSkeleton
β€”CategoryTheory.instFaithfulSkeletonFromSkeleton
CategoryTheory.instFullSkeletonFromSkeleton
CategoryTheory.instEssSurjSkeletonFromSkeleton

---

← Back to Index