Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/SmallObject/Basic.lean

Statistics

MetricCount
DefinitionsHasSmallObjectArgument, instOrderBotToTypeOrdSmallObjectκ, smallObjectκ
3
Theoremsexists_cardinal, instHasFunctorialFactorizationLlpRlp, isCardinalForSmallObjectArgument_smallObjectκ, llp_rlp_of_hasSmallObjectArgument, llp_rlp_of_hasSmallObjectArgument', smallObjectκ_isRegular
6
Total9

CategoryTheory.MorphismProperty

Definitions

NameCategoryTheorems
HasSmallObjectArgument 📖CompData
1 mathmath: CategoryTheory.IsGrothendieckAbelian.instHasSmallObjectArgumentGeneratingMonomorphisms
instOrderBotToTypeOrdSmallObjectκ 📖CompOp
2 mathmath: isCardinalForSmallObjectArgument_smallObjectκ, llp_rlp_of_hasSmallObjectArgument'
smallObjectκ 📖CompOp
3 mathmath: smallObjectκ_isRegular, isCardinalForSmallObjectArgument_smallObjectκ, llp_rlp_of_hasSmallObjectArgument'

Theorems

NameKindAssumesProvesValidatesDepends On
instHasFunctorialFactorizationLlpRlp 📖mathematicalHasFunctorialFactorization
llp
rlp
CategoryTheory.SmallObject.hasFunctorialFactorization
smallObjectκ_isRegular
isCardinalForSmallObjectArgument_smallObjectκ
isCardinalForSmallObjectArgument_smallObjectκ 📖mathematicalIsCardinalForSmallObjectArgument
smallObjectκ
smallObjectκ_isRegular
instOrderBotToTypeOrdSmallObjectκ
HasSmallObjectArgument.exists_cardinal
llp_rlp_of_hasSmallObjectArgument 📖mathematicalllp
rlp
retracts
transfiniteCompositions
pushouts
coproducts
CategoryTheory.SmallObject.llp_rlp_of_isCardinalForSmallObjectArgument
smallObjectκ_isRegular
isCardinalForSmallObjectArgument_smallObjectκ
llp_rlp_of_hasSmallObjectArgument' 📖mathematicalllp
rlp
retracts
transfiniteCompositionsOfShape
pushouts
coproducts
Ordinal.ToType
Cardinal.ord
smallObjectκ
linearOrder_toType
Ordinal.instSuccOrderToType
instOrderBotToTypeOrdSmallObjectκ
wellFoundedLT_toType
CategoryTheory.SmallObject.llp_rlp_of_isCardinalForSmallObjectArgument'
smallObjectκ_isRegular
isCardinalForSmallObjectArgument_smallObjectκ
smallObjectκ_isRegular 📖mathematicalFact
Cardinal.IsRegular
smallObjectκ
HasSmallObjectArgument.exists_cardinal

CategoryTheory.MorphismProperty.HasSmallObjectArgument

Theorems

NameKindAssumesProvesValidatesDepends On
exists_cardinal 📖mathematicalCategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument

---

← Back to Index