Documentation Verification Report

Construction

📁 Source: Mathlib/CategoryTheory/SmallObject/Construction.lean

Statistics

MetricCount
DefinitionsFunctorObjIndex, b, i, t, attachCellsιFunctorObj, attachCellsιFunctorObjOfSmall, functor, functorMap, functorMapSrc, functorMapTgt, functorObj, functorObjLeft, functorObjLeftFamily, functorObjSrcFamily, functorObjTgtFamily, functorObjTop, ε, ιFunctorObj, π'FunctorObj, πFunctorObj, ρFunctorObj
21
Theoremscomm, comm_assoc, w, w_assoc, attachCellsιFunctorObj_cofan₁, attachCellsιFunctorObj_cofan₂, attachCellsιFunctorObj_g₁, attachCellsιFunctorObj_g₂, attachCellsιFunctorObj_isColimit₁, attachCellsιFunctorObj_isColimit₂, attachCellsιFunctorObj_m, attachCellsιFunctorObj_ι, attachCellsιFunctorObj_π, functorMapSrc_functorObjTop, functorMapSrc_functorObjTop_assoc, functorMap_comm, functorMap_id, functorMap_π, functorMap_π_assoc, functorObj_comm, functorObj_comm_assoc, functorObj_isPushout, functor_map, functor_obj, instSmallFunctorObjIndex, instSmallιAttachCellsιFunctorObj, ε_app, ιFunctorObj_extension, ιFunctorObj_extension', ιFunctorObj_naturality, ιFunctorObj_naturality_assoc, ιFunctorObj_πFunctorObj, ιFunctorObj_πFunctorObj_assoc, ι_functorMapSrc, ι_functorMapSrc_assoc, ι_functorMapTgt, ι_functorMapTgt_assoc, ρFunctorObj_π, ρFunctorObj_π_assoc
39
Total60

CategoryTheory.SmallObject

Definitions

NameCategoryTheorems
FunctorObjIndex 📖CompData
23 mathmath: ρFunctorObj_π_assoc, ι_functorMapSrc, FunctorObjIndex.comm, attachCellsιFunctorObj_cofan₂, functorMapSrc_functorObjTop, functorObj_comm, ιFunctorObj_eq, ι_functorMapSrc_assoc, ι_functorMapTgt, ρFunctorObj_π, functorMap_comm, functorMapSrc_functorObjTop_assoc, attachCellsιFunctorObj_isColimit₁, instSmallFunctorObjIndex, πFunctorObj_eq, functorObj_comm_assoc, attachCellsιFunctorObj_ι, FunctorObjIndex.comm_assoc, attachCellsιFunctorObj_isColimit₂, functorObj_isPushout, attachCellsιFunctorObj_cofan₁, hasColimitsOfShape_discrete, ι_functorMapTgt_assoc
attachCellsιFunctorObj 📖CompOp
10 mathmath: attachCellsιFunctorObj_g₂, attachCellsιFunctorObj_π, attachCellsιFunctorObj_m, attachCellsιFunctorObj_g₁, attachCellsιFunctorObj_cofan₂, instSmallιAttachCellsιFunctorObj, attachCellsιFunctorObj_isColimit₁, attachCellsιFunctorObj_ι, attachCellsιFunctorObj_isColimit₂, attachCellsιFunctorObj_cofan₁
attachCellsιFunctorObjOfSmall 📖CompOp
functor 📖CompOp
6 mathmath: functor_map, ε_app, iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, iterationFunctorMapSuccAppArrowIso_hom_left, functor_obj, iterationFunctorMapSuccAppArrowIso_hom_right_right_comp
functorMap 📖CompOp
6 mathmath: functorMap_id, functor_map, ιFunctorObj_naturality, functorMap_π_assoc, functorMap_π, ιFunctorObj_naturality_assoc
functorMapSrc 📖CompOp
5 mathmath: ι_functorMapSrc, functorMapSrc_functorObjTop, ι_functorMapSrc_assoc, functorMap_comm, functorMapSrc_functorObjTop_assoc
functorMapTgt 📖CompOp
3 mathmath: ι_functorMapTgt, functorMap_comm, ι_functorMapTgt_assoc
functorObj 📖CompOp
29 mathmath: functorMap_id, ρFunctorObj_π_assoc, attachCellsιFunctorObj_g₂, attachCellsιFunctorObj_π, FunctorObjIndex.comm, functor_map, attachCellsιFunctorObj_m, attachCellsιFunctorObj_g₁, attachCellsιFunctorObj_cofan₂, ιFunctorObj_naturality, instSmallιAttachCellsιFunctorObj, ιFunctorObj_πFunctorObj_assoc, functorObj_comm, functorMap_π_assoc, ιFunctorObj_eq, ρFunctorObj_π, attachCellsιFunctorObj_isColimit₁, πFunctorObj_eq, functorMap_π, ιFunctorObj_naturality_assoc, functorObj_comm_assoc, functor_obj, attachCellsιFunctorObj_ι, FunctorObjIndex.comm_assoc, ιFunctorObj_πFunctorObj, attachCellsιFunctorObj_isColimit₂, ιFunctorObj_extension, functorObj_isPushout, attachCellsιFunctorObj_cofan₁
functorObjLeft 📖CompOp
7 mathmath: attachCellsιFunctorObj_m, functorObj_comm, ιFunctorObj_eq, functorMap_comm, πFunctorObj_eq, functorObj_comm_assoc, functorObj_isPushout
functorObjLeftFamily 📖CompOp
functorObjSrcFamily 📖CompOp
10 mathmath: ι_functorMapSrc, functorMapSrc_functorObjTop, functorObj_comm, ιFunctorObj_eq, ι_functorMapSrc_assoc, functorMap_comm, functorMapSrc_functorObjTop_assoc, πFunctorObj_eq, functorObj_comm_assoc, functorObj_isPushout
functorObjTgtFamily 📖CompOp
12 mathmath: ρFunctorObj_π_assoc, FunctorObjIndex.comm, functorObj_comm, ιFunctorObj_eq, ι_functorMapTgt, ρFunctorObj_π, functorMap_comm, πFunctorObj_eq, functorObj_comm_assoc, FunctorObjIndex.comm_assoc, functorObj_isPushout, ι_functorMapTgt_assoc
functorObjTop 📖CompOp
8 mathmath: attachCellsιFunctorObj_g₁, functorMapSrc_functorObjTop, functorObj_comm, ιFunctorObj_eq, functorMapSrc_functorObjTop_assoc, πFunctorObj_eq, functorObj_comm_assoc, functorObj_isPushout
ε 📖CompOp
4 mathmath: ε_app, iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, iterationFunctorMapSuccAppArrowIso_hom_left, iterationFunctorMapSuccAppArrowIso_hom_right_right_comp
ιFunctorObj 📖CompOp
22 mathmath: attachCellsιFunctorObj_g₂, attachCellsιFunctorObj_π, FunctorObjIndex.comm, attachCellsιFunctorObj_m, ε_app, attachCellsιFunctorObj_g₁, attachCellsιFunctorObj_cofan₂, ιFunctorObj_naturality, instSmallιAttachCellsιFunctorObj, ιFunctorObj_πFunctorObj_assoc, functorObj_comm, ιFunctorObj_eq, attachCellsιFunctorObj_isColimit₁, ιFunctorObj_naturality_assoc, functorObj_comm_assoc, attachCellsιFunctorObj_ι, FunctorObjIndex.comm_assoc, ιFunctorObj_πFunctorObj, attachCellsιFunctorObj_isColimit₂, ιFunctorObj_extension, functorObj_isPushout, attachCellsιFunctorObj_cofan₁
π'FunctorObj 📖CompOp
2 mathmath: ρFunctorObj_π_assoc, ρFunctorObj_π
πFunctorObj 📖CompOp
10 mathmath: ρFunctorObj_π_assoc, functor_map, ιFunctorObj_πFunctorObj_assoc, functorMap_π_assoc, ρFunctorObj_π, πFunctorObj_eq, functorMap_π, functor_obj, ιFunctorObj_πFunctorObj, ιFunctorObj_extension
ρFunctorObj 📖CompOp
8 mathmath: ρFunctorObj_π_assoc, attachCellsιFunctorObj_g₂, FunctorObjIndex.comm, functorObj_comm, ρFunctorObj_π, functorObj_comm_assoc, FunctorObjIndex.comm_assoc, functorObj_isPushout

Theorems

NameKindAssumesProvesValidatesDepends On
attachCellsιFunctorObj_cofan₁ 📖mathematicalHomotopicalAlgebra.AttachCells.cofan₁
functorObj
ιFunctorObj
attachCellsιFunctorObj
FunctorObjIndex
FunctorObjIndex.i
CategoryTheory.Limits.sigmaObj
CategoryTheory.Limits.Sigma.ι
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
attachCellsιFunctorObj_cofan₂ 📖mathematicalHomotopicalAlgebra.AttachCells.cofan₂
functorObj
ιFunctorObj
attachCellsιFunctorObj
FunctorObjIndex
FunctorObjIndex.i
CategoryTheory.Limits.sigmaObj
CategoryTheory.Limits.Sigma.ι
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
attachCellsιFunctorObj_g₁ 📖mathematicalHomotopicalAlgebra.AttachCells.g₁
functorObj
ιFunctorObj
attachCellsιFunctorObj
functorObjTop
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
attachCellsιFunctorObj_g₂ 📖mathematicalHomotopicalAlgebra.AttachCells.g₂
functorObj
ιFunctorObj
attachCellsιFunctorObj
ρFunctorObj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
attachCellsιFunctorObj_isColimit₁ 📖mathematicalHomotopicalAlgebra.AttachCells.isColimit₁
functorObj
ιFunctorObj
attachCellsιFunctorObj
CategoryTheory.Limits.coproductIsCoproduct
FunctorObjIndex
FunctorObjIndex.i
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
attachCellsιFunctorObj_isColimit₂ 📖mathematicalHomotopicalAlgebra.AttachCells.isColimit₂
functorObj
ιFunctorObj
attachCellsιFunctorObj
CategoryTheory.Limits.coproductIsCoproduct
FunctorObjIndex
FunctorObjIndex.i
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
attachCellsιFunctorObj_m 📖mathematicalHomotopicalAlgebra.AttachCells.m
functorObj
ιFunctorObj
attachCellsιFunctorObj
functorObjLeft
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
attachCellsιFunctorObj_ι 📖mathematicalHomotopicalAlgebra.AttachCells.ι
functorObj
ιFunctorObj
attachCellsιFunctorObj
FunctorObjIndex
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
attachCellsιFunctorObj_π 📖mathematicalHomotopicalAlgebra.AttachCells.π
functorObj
ιFunctorObj
attachCellsιFunctorObj
FunctorObjIndex.i
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
functorMapSrc_functorObjTop 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.sigmaObj
FunctorObjIndex
functorObjSrcFamily
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
functorMapSrc
functorObjTop
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.left
CategoryTheory.Limits.Sigma.hom_ext
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
ι_functorMapSrc_assoc
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Limits.colimit.ι_desc_assoc
functorMapSrc_functorObjTop_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.sigmaObj
FunctorObjIndex
functorObjSrcFamily
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
functorMapSrc
functorObjTop
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
functorMapSrc_functorObjTop
functorMap_comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.sigmaObj
FunctorObjIndex
functorObjSrcFamily
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
functorObjTgtFamily
functorObjLeft
functorMapTgt
functorMapSrc
CategoryTheory.Limits.Sigma.hom_ext
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.ι_colimMap_assoc
ι_functorMapTgt
ι_functorMapSrc_assoc
CategoryTheory.Limits.ι_colimMap
functorMap_id 📖mathematicalfunctorMap
CategoryTheory.CategoryStruct.id
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
functorObj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.pushout.hom_ext
functorMap_comm
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.Limits.Sigma.hom_ext
ι_functorMapTgt_assoc
functorMap_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
functorObj
functorMap
πFunctorObj
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.pushout.hom_ext
functorMap_comm
CategoryTheory.Limits.colimit.ι_desc_assoc
CategoryTheory.Category.assoc
ιFunctorObj_πFunctorObj
CategoryTheory.Arrow.w_mk_right
ιFunctorObj_πFunctorObj_assoc
CategoryTheory.Limits.Sigma.hom_ext
ρFunctorObj_π
ι_functorMapTgt_assoc
CategoryTheory.Limits.colimit.ι_desc
ρFunctorObj_π_assoc
functorMap_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
functorObj
functorMap
πFunctorObj
CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
functorMap_π
functorObj_comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.sigmaObj
FunctorObjIndex
functorObjSrcFamily
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
functorObj
functorObjTop
ιFunctorObj
functorObjTgtFamily
functorObjLeft
ρFunctorObj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.pushout.condition
functorObj_comm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.sigmaObj
FunctorObjIndex
functorObjSrcFamily
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
functorObjTop
functorObj
ιFunctorObj
functorObjTgtFamily
functorObjLeft
ρFunctorObj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
functorObj_comm
functorObj_isPushout 📖mathematicalCategoryTheory.IsPushout
CategoryTheory.Limits.sigmaObj
FunctorObjIndex
functorObjSrcFamily
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
functorObjTgtFamily
functorObj
functorObjTop
functorObjLeft
ιFunctorObj
ρFunctorObj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.IsPushout.of_hasPushout
functor_map 📖mathematicalCategoryTheory.Limits.HasColimitsOfShape
CategoryTheory.Discrete
FunctorObjIndex
CategoryTheory.discreteCategory
CategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
functor
CategoryTheory.Arrow.homMk
functorObj
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
πFunctorObj
functorMap
CategoryTheory.CommaMorphism.right
functor_obj 📖mathematicalCategoryTheory.Limits.HasColimitsOfShape
CategoryTheory.Discrete
FunctorObjIndex
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
functor
functorObj
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
πFunctorObj
instSmallFunctorObjIndex 📖mathematicalSmall
FunctorObjIndex
small_prod
CategoryTheory.instSmallHomOfLocallySmall
Equiv.symm_apply_apply
EquivLike.toEmbeddingLike
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.instIsIsoEqToHom
small_of_injective
small_sigma
UnivLE.small
UnivLE.self
instSmallιAttachCellsιFunctorObj 📖mathematicalSmall
HomotopicalAlgebra.AttachCells.ι
functorObj
ιFunctorObj
attachCellsιFunctorObj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instSmallFunctorObjIndex
ε_app 📖mathematicalCategoryTheory.Limits.HasColimitsOfShape
CategoryTheory.Discrete
FunctorObjIndex
CategoryTheory.discreteCategory
CategoryTheory.NatTrans.app
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.id
functor
ε
CategoryTheory.Arrow.homMk
CategoryTheory.Functor.obj
ιFunctorObj
CategoryTheory.Comma.right
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
ιFunctorObj_extension 📖mathematicalCategoryTheory.CommSqCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
functorObj
ιFunctorObj
πFunctorObj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.CommSq.w
FunctorObjIndex.comm
CategoryTheory.Category.assoc
ρFunctorObj_π
CategoryTheory.Limits.colimit.ι_desc
ιFunctorObj_extension' 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
functorObj
CategoryTheory.Iso.hom
ιFunctorObj
πFunctorObj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
ιFunctorObj_extension
CategoryTheory.Category.assoc
ιFunctorObj_πFunctorObj
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.inv_hom_id_assoc
ιFunctorObj_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
functorObj
ιFunctorObj
functorMap
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.left
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.colimit.ι_desc
functorMap_comm
ιFunctorObj_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
functorObj
ιFunctorObj
functorMap
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.left
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ιFunctorObj_naturality
ιFunctorObj_πFunctorObj 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
functorObj
ιFunctorObj
πFunctorObj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.colimit.ι_desc
ιFunctorObj_πFunctorObj_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
functorObj
ιFunctorObj
πFunctorObj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ιFunctorObj_πFunctorObj
ι_functorMapSrc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
CategoryTheory.Comma.left
CategoryTheory.CommaMorphism.left
functorObjSrcFamily
CategoryTheory.Limits.sigmaObj
FunctorObjIndex
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.Limits.Sigma.ι
functorMapSrc
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.Sigma.ι_comp_map'
CategoryTheory.Category.id_comp
ι_functorMapSrc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
CategoryTheory.Comma.left
CategoryTheory.CommaMorphism.left
functorObjSrcFamily
CategoryTheory.Limits.sigmaObj
FunctorObjIndex
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.Limits.Sigma.ι
functorMapSrc
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_functorMapSrc
ι_functorMapTgt 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
CategoryTheory.Comma.left
CategoryTheory.CommaMorphism.left
functorObjTgtFamily
CategoryTheory.Limits.sigmaObj
FunctorObjIndex
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.Limits.Sigma.ι
functorMapTgt
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.Sigma.ι_comp_map'
CategoryTheory.Category.id_comp
ι_functorMapTgt_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
CategoryTheory.Comma.left
CategoryTheory.CommaMorphism.left
functorObjTgtFamily
CategoryTheory.Limits.sigmaObj
FunctorObjIndex
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.Limits.Sigma.ι
functorMapTgt
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_functorMapTgt
ρFunctorObj_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.sigmaObj
FunctorObjIndex
functorObjTgtFamily
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
functorObj
ρFunctorObj
πFunctorObj
π'FunctorObj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.colimit.ι_desc
ρFunctorObj_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.sigmaObj
FunctorObjIndex
functorObjTgtFamily
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
functorObj
ρFunctorObj
πFunctorObj
π'FunctorObj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ρFunctorObj_π

CategoryTheory.SmallObject.FunctorObjIndex

Definitions

NameCategoryTheorems
b 📖CompOp
2 mathmath: w_assoc, w
i 📖CompOp
9 mathmath: CategoryTheory.SmallObject.attachCellsιFunctorObj_π, comm, CategoryTheory.SmallObject.attachCellsιFunctorObj_cofan₂, w_assoc, CategoryTheory.SmallObject.attachCellsιFunctorObj_isColimit₁, comm_assoc, w, CategoryTheory.SmallObject.attachCellsιFunctorObj_isColimit₂, CategoryTheory.SmallObject.attachCellsιFunctorObj_cofan₁
t 📖CompOp
4 mathmath: comm, w_assoc, comm_assoc, w

Theorems

NameKindAssumesProvesValidatesDepends On
comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
i
CategoryTheory.SmallObject.functorObj
CategoryTheory.Limits.sigmaObj
CategoryTheory.SmallObject.FunctorObjIndex
CategoryTheory.SmallObject.functorObjTgtFamily
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.Limits.Sigma.ι
CategoryTheory.SmallObject.ρFunctorObj
t
CategoryTheory.SmallObject.ιFunctorObj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.Sigma.ι_map_assoc
CategoryTheory.Limits.colimit.ι_desc_assoc
CategoryTheory.whisker_eq
CategoryTheory.SmallObject.functorObj_comm
comm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
i
CategoryTheory.Limits.sigmaObj
CategoryTheory.SmallObject.FunctorObjIndex
CategoryTheory.SmallObject.functorObjTgtFamily
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.Limits.Sigma.ι
CategoryTheory.SmallObject.functorObj
CategoryTheory.SmallObject.ρFunctorObj
t
CategoryTheory.SmallObject.ιFunctorObj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm
w 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
i
t
b
w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
i
t
b
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w

---

← Back to Index