Documentation Verification Report

IsCardinalForSmallObjectArgument

📁 Source: Mathlib/CategoryTheory/SmallObject/IsCardinalForSmallObjectArgument.lean

Statistics

MetricCount
DefinitionsIsCardinalForSmallObjectArgument, attachCellsOfSuccStructProp, functorialFactorizationData, iteration, iterationFunctor, iterationFunctorMapSuccAppArrowIso, iterationFunctorObjObjRightIso, iterationObjRightIso, obj, objMap, propArrow, relativeCellComplexιObj, relativeCellComplexιObjFObjSuccIso, succStruct, transfiniteCompositionOfShapeSuccStructPropιIteration, transfiniteCompositionOfShapeιIterationAppRight, ιIteration, ιObj, πObj
19
TheoremshasCoproducts, hasIterationOfShape, hasPushouts, isSmall, locallySmall, preservesColimit, functorialFactorizationData_Z_map, functorialFactorizationData_Z_obj, functorialFactorizationData_i_app, functorialFactorizationData_p_app, hasColimitsOfShape_discrete, hasCoproducts, hasFunctorialFactorization, hasIterationOfShape, hasPushouts, hasRightLiftingProperty_πObj, instIsIsoRightAppArrowMapToTypeOrdFunctorIterationFunctor, instIsIsoRightAppArrowιIteration, isSmall, iterationFunctorMapSuccAppArrowIso_hom_left, iterationFunctorMapSuccAppArrowIso_hom_right_right_comp, iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, iterationFunctorObjObjRightIso_ιIteration_app_right, iterationFunctorObjObjRightIso_ιIteration_app_right_assoc, iterationObjRightIso_hom, llp_rlp_of_isCardinalForSmallObjectArgument, llp_rlp_of_isCardinalForSmallObjectArgument', llp_rlp_ιObj, locallySmall, objMap_comp, objMap_comp_assoc, objMap_id, preservesColimit, prop_iterationFunctor_map_succ, rlp_πObj, succStruct_prop_le_propArrow, transfiniteCompositionOfShapeSuccStructPropιIteration_F, transfiniteCompositionsOfShape_ιObj, ιFunctorObj_eq, ιObj_naturality, ιObj_naturality_assoc, ιObj_πObj, ιObj_πObj_assoc, πFunctorObj_eq, πObj_naturality, πObj_naturality_assoc, πObj_ιIteration_app_right, πObj_ιIteration_app_right_assoc
48
Total67

CategoryTheory.MorphismProperty

Definitions

NameCategoryTheorems
IsCardinalForSmallObjectArgument 📖CompData
2 mathmath: isCardinalForSmallObjectArgument_smallObjectκ, HasSmallObjectArgument.exists_cardinal

CategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument

Theorems

NameKindAssumesProvesValidatesDepends On
hasCoproducts 📖mathematicalCategoryTheory.Limits.HasCoproducts
hasIterationOfShape 📖mathematicalCategoryTheory.Limits.HasIterationOfShape
Ordinal.ToType
Cardinal.ord
linearOrder_toType
hasPushouts 📖mathematicalCategoryTheory.Limits.HasPushouts
isSmall 📖mathematicalCategoryTheory.MorphismProperty.IsSmall
locallySmall 📖mathematicalCategoryTheory.LocallySmall
preservesColimit 📖mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.types
Ordinal.ToType
Cardinal.ord
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
CategoryTheory.TransfiniteCompositionOfShape.F
Ordinal.instSuccOrderToType
wellFoundedLT_toType
HomotopicalAlgebra.RelativeCellComplex.toTransfiniteCompositionOfShape
Set.Elem
CategoryTheory.Arrow
CategoryTheory.MorphismProperty.toSet
CategoryTheory.Comma.left
CategoryTheory.Functor.id
Set
Set.instMembership
CategoryTheory.Comma.right
CategoryTheory.MorphismProperty.homFamily
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op

CategoryTheory.SmallObject

Definitions

NameCategoryTheorems
attachCellsOfSuccStructProp 📖CompOp
functorialFactorizationData 📖CompOp
4 mathmath: functorialFactorizationData_i_app, functorialFactorizationData_Z_obj, functorialFactorizationData_Z_map, functorialFactorizationData_p_app
iteration 📖CompOp
7 mathmath: πObj_ιIteration_app_right, iterationObjRightIso_hom, πObj_ιIteration_app_right_assoc, iterationFunctorObjObjRightIso_ιIteration_app_right, transfiniteCompositionOfShapeSuccStructPropιIteration_F, iterationFunctorObjObjRightIso_ιIteration_app_right_assoc, instIsIsoRightAppArrowιIteration
iterationFunctor 📖CompOp
10 mathmath: ιFunctorObj_eq, instIsIsoRightAppArrowMapToTypeOrdFunctorIterationFunctor, iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, iterationFunctorMapSuccAppArrowIso_hom_left, πFunctorObj_eq, iterationFunctorObjObjRightIso_ιIteration_app_right, transfiniteCompositionOfShapeSuccStructPropιIteration_F, prop_iterationFunctor_map_succ, iterationFunctorMapSuccAppArrowIso_hom_right_right_comp, iterationFunctorObjObjRightIso_ιIteration_app_right_assoc
iterationFunctorMapSuccAppArrowIso 📖CompOp
3 mathmath: iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, iterationFunctorMapSuccAppArrowIso_hom_left, iterationFunctorMapSuccAppArrowIso_hom_right_right_comp
iterationFunctorObjObjRightIso 📖CompOp
3 mathmath: πFunctorObj_eq, iterationFunctorObjObjRightIso_ιIteration_app_right, iterationFunctorObjObjRightIso_ιIteration_app_right_assoc
iterationObjRightIso 📖CompOp
1 mathmath: iterationObjRightIso_hom
obj 📖CompOp
20 mathmath: πObj_ιIteration_app_right, functorialFactorizationData_i_app, objMap_comp_assoc, functorialFactorizationData_Z_obj, llp_rlp_ιObj, objMap_id, ιObj_naturality, ιFunctorObj_eq, πObj_ιIteration_app_right_assoc, πObj_naturality_assoc, hasRightLiftingProperty_πObj, πFunctorObj_eq, objMap_comp, rlp_πObj, ιObj_πObj, ιObj_πObj_assoc, ιObj_naturality_assoc, functorialFactorizationData_p_app, transfiniteCompositionsOfShape_ιObj, πObj_naturality
objMap 📖CompOp
10 mathmath: functorialFactorizationData_i_app, objMap_comp_assoc, objMap_id, ιObj_naturality, πObj_naturality_assoc, functorialFactorizationData_Z_map, objMap_comp, ιObj_naturality_assoc, functorialFactorizationData_p_app, πObj_naturality
propArrow 📖CompOp
1 mathmath: succStruct_prop_le_propArrow
relativeCellComplexιObj 📖CompOp
2 mathmath: ιFunctorObj_eq, πFunctorObj_eq
relativeCellComplexιObjFObjSuccIso 📖CompOp
2 mathmath: ιFunctorObj_eq, πFunctorObj_eq
succStruct 📖CompOp
3 mathmath: succStruct_prop_le_propArrow, transfiniteCompositionOfShapeSuccStructPropιIteration_F, prop_iterationFunctor_map_succ
transfiniteCompositionOfShapeSuccStructPropιIteration 📖CompOp
1 mathmath: transfiniteCompositionOfShapeSuccStructPropιIteration_F
transfiniteCompositionOfShapeιIterationAppRight 📖CompOp
2 mathmath: iterationFunctorObjObjRightIso_ιIteration_app_right, iterationFunctorObjObjRightIso_ιIteration_app_right_assoc
ιIteration 📖CompOp
7 mathmath: πObj_ιIteration_app_right, iterationObjRightIso_hom, πObj_ιIteration_app_right_assoc, iterationFunctorObjObjRightIso_ιIteration_app_right, transfiniteCompositionOfShapeSuccStructPropιIteration_F, iterationFunctorObjObjRightIso_ιIteration_app_right_assoc, instIsIsoRightAppArrowιIteration
ιObj 📖CompOp
9 mathmath: functorialFactorizationData_i_app, llp_rlp_ιObj, ιObj_naturality, ιFunctorObj_eq, πFunctorObj_eq, ιObj_πObj, ιObj_πObj_assoc, ιObj_naturality_assoc, transfiniteCompositionsOfShape_ιObj
πObj 📖CompOp
10 mathmath: πObj_ιIteration_app_right, πObj_ιIteration_app_right_assoc, πObj_naturality_assoc, hasRightLiftingProperty_πObj, πFunctorObj_eq, rlp_πObj, ιObj_πObj, ιObj_πObj_assoc, functorialFactorizationData_p_app, πObj_naturality

Theorems

NameKindAssumesProvesValidatesDepends On
functorialFactorizationData_Z_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.MorphismProperty.FunctorialFactorizationData.Z
CategoryTheory.MorphismProperty.llp
CategoryTheory.MorphismProperty.rlp
functorialFactorizationData
objMap
functorialFactorizationData_Z_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.MorphismProperty.FunctorialFactorizationData.Z
CategoryTheory.MorphismProperty.llp
CategoryTheory.MorphismProperty.rlp
functorialFactorizationData
obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
functorialFactorizationData_i_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Arrow.leftFunc
obj
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
objMap
CategoryTheory.MorphismProperty.FunctorialFactorizationData.i
CategoryTheory.MorphismProperty.llp
CategoryTheory.MorphismProperty.rlp
functorialFactorizationData
ιObj
functorialFactorizationData_p_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
obj
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
objMap
CategoryTheory.Arrow.rightFunc
CategoryTheory.MorphismProperty.FunctorialFactorizationData.p
CategoryTheory.MorphismProperty.llp
CategoryTheory.MorphismProperty.rlp
functorialFactorizationData
πObj
hasColimitsOfShape_discrete 📖mathematicalCategoryTheory.Limits.HasColimitsOfShape
CategoryTheory.Discrete
FunctorObjIndex
Set.Elem
CategoryTheory.Arrow
CategoryTheory.MorphismProperty.toSet
CategoryTheory.Comma.left
CategoryTheory.Functor.id
Set
Set.instMembership
CategoryTheory.Comma.right
CategoryTheory.MorphismProperty.homFamily
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasColimitsOfShape_of_equivalence
instSmallFunctorObjIndex
locallySmall
CategoryTheory.MorphismProperty.IsSmall.small_toSet
isSmall
hasCoproducts
hasCoproducts 📖mathematicalCategoryTheory.Limits.HasCoproductsCategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.hasCoproducts
hasFunctorialFactorization 📖mathematicalCategoryTheory.MorphismProperty.HasFunctorialFactorization
CategoryTheory.MorphismProperty.llp
CategoryTheory.MorphismProperty.rlp
hasIterationOfShape 📖mathematicalCategoryTheory.Limits.HasIterationOfShape
Ordinal.ToType
Cardinal.ord
linearOrder_toType
CategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.hasIterationOfShape
hasPushouts 📖mathematicalCategoryTheory.Limits.HasPushoutsCategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.hasPushouts
hasRightLiftingProperty_πObj 📖mathematicalCategoryTheory.HasLiftingProperty
obj
πObj
wellFoundedLT_toType
CategoryTheory.Limits.Types.jointly_surjective
preservesColimit
Order.le_succ
ιFunctorObj_extension'
hasColimitsOfShape_discrete
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
hasPushouts
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.Category.id_comp
ιFunctorObj_eq
πFunctorObj_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.CommSq.w
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.comp_id
instIsIsoRightAppArrowMapToTypeOrdFunctorIterationFunctor 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Ordinal.ToType
Cardinal.ord
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
CategoryTheory.Functor
CategoryTheory.Functor.category
iterationFunctor
CategoryTheory.CommaMorphism.right
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
wellFoundedLT_toType
CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.instIsIsoMapF
instIsIsoRightAppArrowιIteration 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
iteration
CategoryTheory.CommaMorphism.right
CategoryTheory.NatTrans.app
ιIteration
CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.isIso
wellFoundedLT_toType
isSmall 📖mathematicalCategoryTheory.MorphismProperty.IsSmallCategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.isSmall
iterationFunctorMapSuccAppArrowIso_hom_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
Ordinal.ToType
Cardinal.ord
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
CategoryTheory.Functor
CategoryTheory.Functor.category
iterationFunctor
Order.succ
Ordinal.instSuccOrderToType
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Order.le_succ
functor
Set.Elem
CategoryTheory.MorphismProperty.toSet
CategoryTheory.Comma.left
Set
Set.instMembership
CategoryTheory.Comma.right
CategoryTheory.MorphismProperty.homFamily
hasPushouts
hasColimitsOfShape_discrete
ε
CategoryTheory.Iso.hom
iterationFunctorMapSuccAppArrowIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Order.le_succ
hasPushouts
hasColimitsOfShape_discrete
iterationFunctorMapSuccAppArrowIso_hom_right_right_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
Ordinal.ToType
Cardinal.ord
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
CategoryTheory.Functor
CategoryTheory.Functor.category
iterationFunctor
Order.succ
Ordinal.instSuccOrderToType
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Order.le_succ
functor
Set.Elem
CategoryTheory.MorphismProperty.toSet
CategoryTheory.Comma.left
Set
Set.instMembership
CategoryTheory.MorphismProperty.homFamily
hasPushouts
hasColimitsOfShape_discrete
ε
CategoryTheory.CommaMorphism.right
CategoryTheory.Iso.hom
iterationFunctorMapSuccAppArrowIso
CategoryTheory.CategoryStruct.id
Order.le_succ
hasPushouts
hasColimitsOfShape_discrete
CategoryTheory.Functor.congr_map
CategoryTheory.CommaMorphism.w
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
instIsIsoRightAppArrowMapToTypeOrdFunctorIterationFunctor
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
Ordinal.ToType
Cardinal.ord
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
CategoryTheory.Functor
CategoryTheory.Functor.category
iterationFunctor
Order.succ
Ordinal.instSuccOrderToType
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Order.le_succ
functor
Set.Elem
CategoryTheory.MorphismProperty.toSet
CategoryTheory.Comma.left
Set
Set.instMembership
CategoryTheory.MorphismProperty.homFamily
hasPushouts
hasColimitsOfShape_discrete
ε
CategoryTheory.CommaMorphism.right
CategoryTheory.Iso.hom
iterationFunctorMapSuccAppArrowIso
Order.le_succ
hasPushouts
hasColimitsOfShape_discrete
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
iterationFunctorMapSuccAppArrowIso_hom_right_right_comp
iterationFunctorObjObjRightIso_ιIteration_app_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Ordinal.ToType
Cardinal.ord
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
CategoryTheory.Functor
CategoryTheory.Functor.category
iterationFunctor
iteration
CategoryTheory.Iso.hom
iterationFunctorObjObjRightIso
CategoryTheory.CommaMorphism.right
CategoryTheory.NatTrans.app
ιIteration
CategoryTheory.TransfiniteCompositionOfShape.F
Ordinal.instSuccOrderToType
wellFoundedLT_toType
CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.toTransfiniteCompositionOfShape
CategoryTheory.MorphismProperty.isomorphisms
transfiniteCompositionOfShapeιIterationAppRight
CategoryTheory.Functor.const
CategoryTheory.TransfiniteCompositionOfShape.incl
wellFoundedLT_toType
instIsIsoRightAppArrowιIteration
CategoryTheory.Category.assoc
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.Category.comp_id
iterationFunctorObjObjRightIso_ιIteration_app_right_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Ordinal.ToType
Cardinal.ord
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
CategoryTheory.Functor
CategoryTheory.Functor.category
iterationFunctor
CategoryTheory.Iso.hom
iterationFunctorObjObjRightIso
iteration
CategoryTheory.CommaMorphism.right
CategoryTheory.NatTrans.app
ιIteration
CategoryTheory.TransfiniteCompositionOfShape.F
Ordinal.instSuccOrderToType
wellFoundedLT_toType
CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.toTransfiniteCompositionOfShape
CategoryTheory.MorphismProperty.isomorphisms
transfiniteCompositionOfShapeιIterationAppRight
CategoryTheory.Functor.const
CategoryTheory.TransfiniteCompositionOfShape.incl
wellFoundedLT_toType
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iterationFunctorObjObjRightIso_ιIteration_app_right
iterationObjRightIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
iteration
iterationObjRightIso
CategoryTheory.CommaMorphism.right
CategoryTheory.NatTrans.app
ιIteration
llp_rlp_of_isCardinalForSmallObjectArgument 📖mathematicalCategoryTheory.MorphismProperty.llp
CategoryTheory.MorphismProperty.rlp
CategoryTheory.MorphismProperty.retracts
CategoryTheory.MorphismProperty.transfiniteCompositions
CategoryTheory.MorphismProperty.pushouts
CategoryTheory.MorphismProperty.coproducts
le_antisymm
wellFoundedLT_toType
llp_rlp_of_isCardinalForSmallObjectArgument'
CategoryTheory.MorphismProperty.retracts_monotone
CategoryTheory.MorphismProperty.transfiniteCompositionsOfShape_le_transfiniteCompositions
CategoryTheory.MorphismProperty.retracts_transfiniteComposition_pushouts_coproducts_le_llp_rlp
llp_rlp_of_isCardinalForSmallObjectArgument' 📖mathematicalCategoryTheory.MorphismProperty.llp
CategoryTheory.MorphismProperty.rlp
CategoryTheory.MorphismProperty.retracts
CategoryTheory.MorphismProperty.transfiniteCompositionsOfShape
CategoryTheory.MorphismProperty.pushouts
CategoryTheory.MorphismProperty.coproducts
Ordinal.ToType
Cardinal.ord
linearOrder_toType
Ordinal.instSuccOrderToType
wellFoundedLT_toType
le_antisymm
wellFoundedLT_toType
ιObj_πObj
CategoryTheory.Category.comp_id
rlp_πObj
CategoryTheory.sq_hasLift_of_hasLiftingProperty
CategoryTheory.Category.id_comp
CategoryTheory.CommSq.fac_left
CategoryTheory.Arrow.hom_ext
CategoryTheory.CommSq.fac_right
transfiniteCompositionsOfShape_ιObj
CategoryTheory.MorphismProperty.retracts_transfiniteCompositionsOfShape_pushouts_coproducts_le_llp_rlp
llp_rlp_ιObj 📖mathematicalCategoryTheory.MorphismProperty.llp
CategoryTheory.MorphismProperty.rlp
obj
ιObj
CategoryTheory.MorphismProperty.transfiniteCompositionsOfShape_pushouts_coproducts_le_llp_rlp
wellFoundedLT_toType
transfiniteCompositionsOfShape_ιObj
locallySmall 📖mathematicalCategoryTheory.LocallySmallCategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.locallySmall
objMap_comp 📖mathematicalobjMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
obj
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map_comp
objMap_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
objMap
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
objMap_comp
objMap_id 📖mathematicalobjMap
CategoryTheory.CategoryStruct.id
CategoryTheory.Arrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
obj
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map_id
preservesColimit 📖mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.types
Ordinal.ToType
Cardinal.ord
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
CategoryTheory.TransfiniteCompositionOfShape.F
Ordinal.instSuccOrderToType
wellFoundedLT_toType
HomotopicalAlgebra.RelativeCellComplex.toTransfiniteCompositionOfShape
Set.Elem
CategoryTheory.Arrow
CategoryTheory.MorphismProperty.toSet
CategoryTheory.Comma.left
CategoryTheory.Functor.id
Set
Set.instMembership
CategoryTheory.Comma.right
CategoryTheory.MorphismProperty.homFamily
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
wellFoundedLT_toType
CategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.preservesColimit
prop_iterationFunctor_map_succ 📖mathematicalSuccStruct.prop
CategoryTheory.Functor
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.category
succStruct
CategoryTheory.Functor.obj
Ordinal.ToType
Cardinal.ord
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
iterationFunctor
Order.succ
Ordinal.instSuccOrderToType
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Order.le_succ
hasIterationOfShape
Cardinal.noMaxOrder
Cardinal.IsRegular.aleph0_le
Fact.elim
SuccStruct.prop_iterationFunctor_map_succ
wellFoundedLT_toType
CategoryTheory.Limits.instHasIterationOfShapeFunctor
CategoryTheory.Limits.instHasIterationOfShapeArrow
not_isMax
rlp_πObj 📖mathematicalCategoryTheory.MorphismProperty.rlp
obj
πObj
hasRightLiftingProperty_πObj
succStruct_prop_le_propArrow 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Functor
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
SuccStruct.prop
succStruct
CategoryTheory.MorphismProperty.functorCategory
propArrow
CategoryTheory.MorphismProperty.ofHoms_homFamily
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
hasColimitsOfShape_discrete
hasPushouts
functorObj_isPushout
CategoryTheory.MorphismProperty.coproducts_of_small
CategoryTheory.MorphismProperty.colimitsOfShape_colimMap
instSmallFunctorObjIndex
locallySmall
CategoryTheory.MorphismProperty.IsSmall.small_toSet
isSmall
CategoryTheory.MorphismProperty.isomorphisms.iff
CategoryTheory.IsIso.id
transfiniteCompositionOfShapeSuccStructPropιIteration_F 📖mathematicalCategoryTheory.TransfiniteCompositionOfShape.F
CategoryTheory.Functor
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.category
Ordinal.ToType
Cardinal.ord
linearOrder_toType
CategoryTheory.Functor.id
iteration
ιIteration
Ordinal.instSuccOrderToType
wellFoundedLT_toType
CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.toTransfiniteCompositionOfShape
SuccStruct.prop
succStruct
transfiniteCompositionOfShapeSuccStructPropιIteration
iterationFunctor
wellFoundedLT_toType
transfiniteCompositionsOfShape_ιObj 📖mathematicalCategoryTheory.MorphismProperty.transfiniteCompositionsOfShape
CategoryTheory.MorphismProperty.pushouts
CategoryTheory.MorphismProperty.coproducts
Ordinal.ToType
Cardinal.ord
linearOrder_toType
Ordinal.instSuccOrderToType
wellFoundedLT_toType
obj
ιObj
wellFoundedLT_toType
CategoryTheory.MorphismProperty.ofHoms_homFamily
ιFunctorObj_eq 📖mathematicalιFunctorObj
Set.Elem
CategoryTheory.Arrow
CategoryTheory.MorphismProperty.toSet
CategoryTheory.Comma.left
CategoryTheory.Functor.id
Set
Set.instMembership
CategoryTheory.Comma.right
CategoryTheory.MorphismProperty.homFamily
CategoryTheory.Functor.obj
CategoryTheory.instCategoryArrow
Ordinal.ToType
Cardinal.ord
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
CategoryTheory.Functor
CategoryTheory.Functor.category
iterationFunctor
CategoryTheory.Comma.hom
hasColimitsOfShape_discrete
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
hasPushouts
CategoryTheory.Limits.span
CategoryTheory.Limits.sigmaObj
FunctorObjIndex
functorObjSrcFamily
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
functorObjTgtFamily
functorObjTop
functorObjLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.TransfiniteCompositionOfShape.F
obj
ιObj
Ordinal.instSuccOrderToType
wellFoundedLT_toType
HomotopicalAlgebra.RelativeCellComplex.toTransfiniteCompositionOfShape
relativeCellComplexιObj
Order.succ
functorObj
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Order.le_succ
CategoryTheory.Iso.hom
relativeCellComplexιObjFObjSuccIso
hasColimitsOfShape_discrete
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
hasPushouts
wellFoundedLT_toType
Order.le_succ
CategoryTheory.Category.id_comp
CategoryTheory.Functor.congr_map
CategoryTheory.CommaMorphism.w
ιObj_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
ιObj
objMap
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.congr_map
CategoryTheory.NatTrans.naturality
ιObj_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Functor.id
obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
ιObj
objMap
CategoryTheory.CommaMorphism.left
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ιObj_naturality
ιObj_πObj 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
ιObj
πObj
CategoryTheory.Arrow.w_mk_right_assoc
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Category.comp_id
ιObj_πObj_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
ιObj
πObj
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ιObj_πObj
πFunctorObj_eq 📖mathematicalπFunctorObj
Set.Elem
CategoryTheory.Arrow
CategoryTheory.MorphismProperty.toSet
CategoryTheory.Comma.left
CategoryTheory.Functor.id
Set
Set.instMembership
CategoryTheory.Comma.right
CategoryTheory.MorphismProperty.homFamily
CategoryTheory.Functor.obj
CategoryTheory.instCategoryArrow
Ordinal.ToType
Cardinal.ord
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
CategoryTheory.Functor
CategoryTheory.Functor.category
iterationFunctor
CategoryTheory.Comma.hom
hasColimitsOfShape_discrete
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
hasPushouts
CategoryTheory.Limits.span
CategoryTheory.Limits.sigmaObj
FunctorObjIndex
functorObjSrcFamily
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
functorObjTgtFamily
functorObjTop
functorObjLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
functorObj
CategoryTheory.TransfiniteCompositionOfShape.F
obj
ιObj
Ordinal.instSuccOrderToType
wellFoundedLT_toType
HomotopicalAlgebra.RelativeCellComplex.toTransfiniteCompositionOfShape
relativeCellComplexιObj
Order.succ
CategoryTheory.Iso.inv
relativeCellComplexιObjFObjSuccIso
CategoryTheory.Functor.const
CategoryTheory.NatTrans.app
CategoryTheory.TransfiniteCompositionOfShape.incl
πObj
iterationFunctorObjObjRightIso
Order.le_succ
hasPushouts
hasColimitsOfShape_discrete
CategoryTheory.CommaMorphism.w
wellFoundedLT_toType
CategoryTheory.NatTrans.naturality
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
instIsIsoRightAppArrowιIteration
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
πObj_ιIteration_app_right
iterationFunctorObjObjRightIso_ιIteration_app_right
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Category.comp_id
Mathlib.Tactic.Reassoc.eq_whisker'
iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc
CategoryTheory.Arrow.w_mk_right
πObj_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
objMap
πObj
CategoryTheory.CommaMorphism.right
instIsIsoRightAppArrowιIteration
CategoryTheory.eq_whisker
CategoryTheory.CommaMorphism.w
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.assoc
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Category.comp_id
πObj_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
objMap
πObj
CategoryTheory.CommaMorphism.right
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
πObj_naturality
πObj_ιIteration_app_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
iteration
πObj
CategoryTheory.CommaMorphism.right
CategoryTheory.NatTrans.app
ιIteration
CategoryTheory.Comma.hom
CategoryTheory.Category.assoc
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.Category.comp_id
πObj_ιIteration_app_right_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
πObj
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
iteration
CategoryTheory.CommaMorphism.right
CategoryTheory.NatTrans.app
ιIteration
CategoryTheory.Comma.hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
πObj_ιIteration_app_right

---

← Back to Index